Notebook

November 20, 2024

1 Election Analysis

Names: Shiyuan Zhang, Shuoyuan Gao

1.1 1. Introduction and Dataset Research

1. Discovering hidden patterns: For example, in the 2016 U.S. election dataset may contain
multidimensional data such as voter’s voting behavior, socio-economic characteristics, and
geographic information. Unsupervised learning, clustering as we using in below, can help
identify underlying patterns between different groups of voters, such as voters with similar
voting behavior or voters with similar socioeconomic characteristics. Then as we found the
patterns, we can understand better for the voter trends. This can tell us more deeper analysis
and predictions of election outcomes and voter preferences.”

2. Discovering outliers: In the 2016 U.S. election dataset, there may be some unusual voting
patterns like precincts with unusually high or low turnout. We can identified the outliers
using algorithms. This can letting people know more about the precinct characteristics. In
Gaussian Mixture Models, “the GMM from sklearn calculates the score of an observation
based on the density of each point’s location in that space. Thus, points in higher density
regions are less likely to be outliers, and vice versa.”

3. Data exploration and visualization: unsupervised learning can also be used as a data explo-
ration and visualization tool to help researchers better understand the structure and distri-
bution of data in the 2016 U.S. election dataset. For example, cluster analysis allows for the
division of voters into different clusters and the generation of visualization charts to show the
relationships between these clusters. This helps researchers better understand voter behavior
and attitudes, identify potential voting patterns or trends, and extract interesting insights
from the dataset.

Motivation: We want to use the voting data to determine if different counties are clustered according
to the state they are in. We also want to explore the distribution of candidates supported in each
cluster. The specific method is: we take the information of the real state where the county is
located as the pre-defined label, and then check whether the predicted clusters are related to our
pre-defined Location_ State by different clustering algorithms. Then we analyze each cluster in
detail to explore the components with high candidate support.

Citation:

1.Delua, Julianna. “Supervised vs. Unsupervised Learning: What’s the Difference?” IBM, 12
Mar. 2021, https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning.

[1]1:

[3]:

2.Santos, Gustavo. “Using Unsupervised Learning to Find Outliers.” Medium, Towards Data
Science, 2 Nov. 2022, https://towardsdatascience.com /using-unsupervised-learning-to-find-outliers-
670e07396599.

3.Verbeeck, Nico et al. “Unsupervised machine learning for exploratory data analysis in imaging
mass spectrometry.” Mass spectrometry reviews vol. 39,3 (2020): 245-291. doi:10.1002/mas.21602

The dataset is from Professor provided. Background is from 2016 USA president election, it contains
the Democrat candidates and Republicans candidates counts.

voting information include all of the U.S. counties in the 2016 U.S. presidential election. For each
county, the percentage and number of votes that went to each primary presidential candidate is
listed.

pip install sklearn

Requirement already satisfied: sklearn in
/Users/gj/miniconda3/1lib/python3.10/site-packages (0.0.post4)

[notice]l A new release of pip is

available: 23.0.1 -> 23.1.2

[notice] To update, run:

pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

1.2 2. Data Cleaning and Data Manipulation

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

from sklearn.preprocessing import MinMaxScaler
from sklearn.manifold import TSNE

from sklearn.metrics import adjusted_rand_score
from sklearn.datasets import load_digits

from sklearn.cluster import KMeans

from sklearn.metrics import adjusted_rand_score
from sklearn.datasets import make_blobs

from sklearn.mixture import GaussianMixture
from sklearn.cluster import KMeans

from matplotlib.patches import Ellipse
from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score
from sklearn.manifold import TSNE

from sklearn.cluster import AgglomerativeClustering

from scipy.spatial.distance import pdist

from scipy.cluster.hierarchy import linkage, dendrogram, cophenet
from sklearn.preprocessing import StandardScaler

from scipy.spatial.distance import pdist, squareform

from sklearn.neighbors import NearestNeighbors

from sklearn.cluster import DBSCAN

from pyclustertend import hopkins

from sklearn.metrics import silhouette_score, calinski_harabasz_score
import warnings

warnings.filterwarnings("ignore", category=DeprecationWarning)

[126] : | #read data
df = pd.read_csv('election.csv')
df = df.drop('Location_State_Abbreviation',axis =1)

df

[126]: Location_County Location_State Vote_Data_Ben_Carson_Number_of_Votes \
0 Abbeville South Carolina 305
1 Abbot Maine 0
2 Abington Massachusetts 53
3 Acadia Louisiana 0
4 Accomack Virginia 411
4211 Yuma Arizona 0
4212 Yuma Colorado 0
4213 Zapata Texas 4
4214 Zavala Texas 0
4215 Ziebach South Dakota 0

Vote_Data_Ben_Carson_Party Vote_Data_Ben_Carson_Percent_of_Votes \
0 Republican 8.3
1 Republican 0.0
2 Republican 2.5
3 Republican 0.0
4 Republican 9.5
4211 Republican 0.0
4212 Republican 0.0
4213 Republican 4.7
4214 Republican 0.0
4215 Republican 0.0
Vote_Data_Bernie_Sanders_Number_of_Votes Vote_Data_Bernie_Sanders_Party \
312 Democrat

1 1 Democrat

w

4211
4212
4213
4214
4215

B W NN - O

4211
4212
4213
4214
4215

> W N - O

4211
4212
4213
4214
4215

s W N - O

4211

4212
4213
4214

1
1

2

352
087
682

156

33
685
373
132

Democrat
Democrat
Democrat

Democrat
Democrat
Democrat
Democrat
Democrat

Vote_Data_Bernie_Sanders_Percent_of _Votes \

1

17.
00.
53.
31
27.

31.

Vote_Data_Carly_Fiorina_Number_of_Vot

Vote_Data_Rand_Paul_Percent_of_ Vot

0.

O O O O

O O O O
o O O O

39.
23.
18.
58.

es

O O O O O

O O O O O

es

O O O O O

0
4
.4
4

0

O =~ O W o,

Vote_Data_Carly_Fiorina_Party
Republican
Republican
Republican
Republican
Republican

Republican
Republican
Republican
Republican
Republican

4215 0.0

Vote_Data_Rick_Santorum_Number_of_Votes

Vote_Data_Rick_Santorum_Party

0 0

1 0

2 0

3 0

4 0

4211 0

4212 0

4213 0

4214 0

4215 0
Vote_Data_Rick_Santorum_Percent_of Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

4211 0.0

4212 0.0

4213 0.0

4214 0.0

4215 0.0
Vote_Data_Ted_Cruz_Number_of_Votes Vote_Data_Ted_Cruz_Party

0 876 Republican

1 0 Republican

2 208 Republican

3 1454 Republican

4 685 Republican

4211 2556 Republican

4212 0 Republican

4213 32 Republican

4214 0 Republican

4215 25 Republican
Vote_Data_Ted_Cruz_Percent_of_Votes \

0 23.9

1 0.0

2 9.9

3 38.2

4 15.9

Republican
Republican
Republican
Republican
Republican

Republican
Republican
Republican
Republican
Republican

4211 28.8

4212 0.0
4213 37.2
4214 0.0
4215 21.7

Vote_Data_Uncommitted_Number_of_Votes Vote_Data_Uncommitted_Party \

0 0 NaN

1 0 NaN

2 0 NaN

3 0 NaN

4 0 NaN

4211 0 NaN

4212 0 NaN

4213 0 NaN

4214 0 NaN

4215 0 NaN
Vote_Data_Uncommitted_Percent_of_ Votes

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

4211 0.0

4212 0.0

4213 0.0

4214 0.0

4215 0.0

[4216 rows x 50 columns]
[6]: df = df.fillna(0)

[7]: | #check totol wote number
sum_column = df.filter(regex='Number',axis =1).sum(axis=1) -
df ['Vote_Data_No_Preference_Number_ of Votes']
df ['sum_column'] = sum_column
df ['sum_column'].sort_values(ascending=False)

[7]: 2214 1268622

677 760894
831 678313
1630 537303

[8]:

[8]:

[9]:

[9]:

2318 464471

3113
146
38562
1492
4170
Name: sum_column, Length: 4216, dtype: int64

O O O O O

1.2.1 number extreme value which will cause inaccurate
#calculate the average amont of vote of each states
df ['sum_column'] .mean()

13460.871679316888

#filter the low wote number state
df filtered = df[df['sum_column'] > 100]
df = df_filtered.drop('sum_column', axis=1)

df

Location_County Location_State Location_State_Abbreviation \
0 Abbeville South Carolina SC
2 Abington Massachusetts MA
3 Acadia Louisiana LA
4 Accomack Virginia VA
5 Acton Massachusetts MA
4210 Yuba California CA
4211 Yuma Arizona AZ
4213 Zapata Texas TX
4214 Zavala Texas TX
4215 Ziebach South Dakota SD

Vote_Data_Ben_Carson_Number_of_Votes Vote_Data_Ben_Carson_Party
0 305 Republican
2 53 Republican
3 0 Republican
4 411 Republican
5 54 Republican
4210 0 Republican
4211 0 Republican
4213 4 Republican
4214 0 Republican
4215 0 Republican

Vote_Data_Ben_Carson_Percent_of Votes \

Vote_Data_Bernie_Sanders_Number_of_Votes Vote_Data_Bernie_Sanders_Party

0 8.3
2 2.5
3 0.0
4 9.5
5 2.3
4210 0.0
4211 0.0
4213 4.7
4214 0.0
4215 0.0
0 312
2 1352
3 1087
4 682
5 2557
4210 1730
4211 2156
4213 685
4214 373
4215 132
Vote_Data_Bernie_Sanders_Percent_of_Vote
0 17.
2 53.
3 31.
4 27.
5 46.
4210 B1.
4211 31.
4213 23.
4214 18.
4215 58.
Vote_Data_Carly_Fiorina_Number_of_Votes
0 0
2 0
3 0
4 0
5 0
4210 0

S

o I N NP

O = O 01

\

Democrat
Democrat
Democrat
Democrat
Democrat

Democrat
Democrat
Democrat
Democrat
Democrat

\

4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

Vote_Data_Rand_Paul_Percent_of_Vote
0.

o O O O
o O O O

O O O O O
O O O O O

Vote_Data_Rick_Santorum_Number_of _

Vote_Data_Rick_Santorum_Percent_of _

Vote_Data_Ted_Cruz_Number_of_Votes
876
208

O O O O

s \
0

Votes

O O O O

O O O O O

Votes
0.

O O O O
O O O O O

O O O O O
O O O O O

Vote_Data_Rick_Sant

orum_Party
Republican
Republican
Republican
Republican
Republican

Republican
Republican
Republican
Republican
Republican

Vote_Data_Ted_Cruz_Party \

Republican
Republican

3 1454 Republican

4 685 Republican

5 203 Republican

4210 318 Republican

4211 2556 Republican

4213 32 Republican

4214 0 Republican

4215 25 Republican
Vote_Data_Ted_Cruz_Percent_of_Votes \

0 23.9

2 9.9

3 38.2

4 15.9

5 8.7

4210 8.2

4211 28.8

4213 37.2

4214 0.0

4215 21.7
Vote_Data_Uncommitted_Number_of_Votes Vote_Data_Uncommitted_Party \

0 0 0.0

2 0 0.0

3 0 0.0

4 0 0.0

5 0 0.0

4210 0 0.0

4211 0 0.0

4213 0 0.0

4214 0 0.0

4215 0 0.0
Vote_Data_Uncommitted_Percent_of_Votes

0 0.0

2 0.0

3 0.0

4 0.0

5 0.0

4210 0.0

4211 0.0

4213 0.0

4214 0.0

10

4215 0.0
[3592 rows x 51 columns]

[10] : | #delete the col including the number, we would like to use the percentage for,
wcluster
df = df.drop(df.filter(regex='Number', axis=1).columns, axis=1)

df
[10]: Location_County Location_State Location_State_Abbreviation \

0 Abbeville South Carolina SC

2 Abington Massachusetts MA

3 Acadia Louisiana LA

4 Accomack Virginia VA

5 Acton Massachusetts MA

4210 Yuba California CA

4211 Yuma Arizona AZ

4213 Zapata Texas TX

4214 Zavala Texas TX

4215 Ziebach South Dakota SD
Vote_Data_Ben_Carson_Party Vote_Data_Ben_Carson_Percent_of_Votes \

0 Republican 8.3

2 Republican 2.5

3 Republican 0.0

4 Republican 9.5

5 Republican 2.3

4210 Republican 0.0

4211 Republican 0.0

4213 Republican 4.7

4214 Republican 0.0

4215 Republican 0.0
Vote_Data_Bernie_Sanders_Party \

0 Democrat

2 Democrat

3 Democrat

4 Democrat

5 Democrat

4210 Democrat

4211 Democrat

4213 Democrat

4214 Democrat

4215 Democrat

11

g W N O

4210
4211
4213
4214
4215

g w N O

4210
4211
4213
4214
4215

O W N O

4210

4211
4213
4214
4215

g W N O

Vote_Data_Bernie_Sanders_Percent_of_Votes Vote_Data_Carly_Fiorina_Party
17.
53.
31.
27 .
46.

51.

31.
23.
18.
58.

0

ISR NN

O = O 01 =

Republican
Republican
Republican
Republican
Republican

Republican
Republican
Republican
Republican
Republican

Vote_Data_Carly_Fiorina_Percent_of_Votes Vote_Data_Chris_Christie_Party

Vote_Data_No_Preference_Party \

0.

Vote_Data_No_Preference_Percent

O O O O

O O O O O

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0

0

0

0

0

0

0

0

0

0

_of _Votes
0.0
1.2
0.0
0.0
0.2

12

0

O O O O

O O O O O

Republican
Republican
Republican
Republican
Republican

Republican
Republican
Republican
Republican
Republican

Vote_Data_Rand_Paul_Party \
Republican

Republican
Republican
Republican
Republican

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

Vote_Data_Rand_Paul_Percent_of_Votes

Vote_Data_Rick_Santorum_Percent_o

Vote_Data_Ted_Cruz_Percent_of_Votes

0.

O O O O O
o O O O O

f

23.
9.
38.
15.
8.

8.
28.
37.

0.
21.

o O O O

O O O O O

_Vot

0.

~N O N O ©

~N O N 0N

Vote_Data_Uncommitted_Percent_of_Votes

0.0

13

O O O O O
O O O O O

O O O O

O O O O O
O O O O O

Republican
Republican
Republican
Republican
Republican

Vote_Data_Rick_Santorum_Party

es

O O O O O

Republican
Republican
Republican
Republican
Republican

Republican
Republican
Republican
Republican
Republican

Vote_Data_Ted_Cruz_Party

Republican
Republican
Republican
Republican
Republican

Republican
Republican
Republican
Republican
Republican

Vote_Data_Uncommitted_Party \

0.0

o O O O
o O O O

O O O O O
O O O O O

(G2l > I GV I V)
o O O O
O O O O

4210

0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

[3592 rows x 35 columns]

[11]: df_num = df.select_dtypes(include='number"')

df _num
[11]: Vote_Data_Ben_Carson_Percent_of_Votes \

0 8.3
2 2.5
3 0.0
4 9.5
5 2.3
4210 0.0
4211 0.0
4213 4.7
4214 0.0
4215 0.0

Vote_Data_Bernie_Sanders_Percent_of Votes \
17.
53.
31.
27.
46.

g d W N O
I I T NP

4210 51.
4211 31.
4213 23.
4214 18.
4215 58.

O = O 01 =~

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0.0

> W N O
o O O
o O O

14

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

g W N O

4210
4211
4213
4214
4215

O O O O O
O O O O O

Vote_Data_Chris_Christie_Percent_of_Votes

0.

O O O O

O O O O O
O O O O O

Vote_Data_Donald_Trump_Percent_of_Votes
36.
B7.
44 .
4a7.
28.

82.
49.
39.

0.
68.

9

N © O ©

~N O O oo

oo oo o

Vote_Data_Hillary_Clinton_Percent_of_Votes
81.
44 .
53.
72.
52.

15

46.
63.
67.
75.
41.

0 O N O

(SN R BN

\

\

Vote_Data_Jeb_Bush_Percent_of Votes \

0 6.4

2 0.0

3 0.0

4 0.0

5 0.0

4210 0.0

4211 0.0

4213 0.0

4214 0.0

4215 0.0
Vote_Data_John_Kasich_Percent_of Votes \

0 4.3

2 14.2

3 3.4

4 4.9

5 32.5

4210 5.1

4211 5.9

4213 0.0

4214 0.0

4215 9.6
Vote_Data_Marco_Rubio_Percent_of_Votes \

0 20.2

2 12.7

3 10.6

4 20.9

5 24.9

4210 0.0

4211 0.0

4213 12.8

4214 0.0

4215 0.0
Vote_Data_Martin_OMalley_Percent_of_Votes \

0 0.0

2 0.0

3 0.0

4 0.0

5 0.0

4210 0.0

16

4211 0.0

4213 0.0

4214 0.0

4215 0.0
Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \

0 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

5 0.0 0.0

4210 0.0 0.0

4211 0.0 0.0

4213 0.0 0.0

4214 0.0 0.0

4215 0.0 0.0
Vote Data No Preference Percent of Votes \

0 0.0

2 1.2

3 0.0

4 0.0

5 0.2

4210 0.0

4211 0.0

4213 0.0

4214 0.0

4215 0.0
Vote Data_Rand_Paul Percent of Votes \

0 0.0

2 0.0

3 0.0

4 0.0

5 0.0

4210 0.0

4211 0.0

4213 0.0

4214 0.0

4215 0.0
Vote_Data_Rick_Santorum_Percent_of Votes \

0 0.0

2 0.0

17

4 0.0

5 0.0

4210 0.0

4211 0.0

4213 0.0

4214 0.0

4215 0.0
Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \

0] 23.9 0.0

2 9.9 0.0

3 38.2 0.0

4 15.9 0.0

5 8.7 0.0

4210 8.2 0.0

4211 28.8 0.0

4213 37.2 0.0

4214 0.0 0.0

4215 21.7 0.0
Vote_Data_Uncommitted_Percent_of_ Votes

0 0.0

2 0.0

3 0.0

4 0.0

5 0.0

4210 0.0

4211 0.0

4213 0.0

4214 0.0

4215 0.0

[3592 rows x 18 columns]

We first read the dataset.

Drop the NA value.

Then check totol vote number.

We calculate the average amont of vote of each states to drop the filter the low vote number

state.

5. We filter the total vote number below the 100, which filter the extreme values out of the
dataset.

6. Finally, Delete the col including the number, we would like to use the percentage for cluster.

B0 o=

Now, we have the percentage columns that only have the total vote number greater than 100,

18

“df num”.

1.3 3. Basic Descriptive Analytics

1.3.1 3.1 For numerical attributes, calculate basic summary statistics about each

attribute.

[12]: df _basic = df_num.describe()
df _basic

[12]: Vote_Data_Ben_Carson_Percent_of_Votes \
count 3592.000000
mean 2.699807
std 3.589121
min 0.000000
25% 0.000000
50% 0.000000
75% 5.400000
max 21.700000

Vote Data Bernie Sanders Percent of Votes \

count 3592.000000
mean 47.883404
std 18.395268
min 0.000000
25% 36.875000
50% 48.600000
75% 56.800000
max 100.000000

Vote_Data_Carly_Fiorina_Percent_of_Votes \

count 3592.000000
mean 0.067054
std 0.481854
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 11.700000

Vote Data Chris Christie Percent of Votes \

count 3592.000000
mean 0.053931
std 0.436933
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000

19

max 8.7195632

Vote_Data_Donald_Trump_Percent_of_Votes \

count 3592.000000
mean 46.237583
std 15.930844
min 0.000000
25% 35.000000
50% 45.400000
75% 55.700000
max 91.500000

Vote_Data_Hillary_Clinton_Percent_of_Votes \

count 3592.000000
mean 49.293099
std 18.057093
min 0.000000
25% 40.000000
50% 48.650000
75% 59.800000
max 100.000000

Vote_Data_Jeb_Bush_Percent_of Votes \

count 3592.000000
mean 0.192129
std 1.137126
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 12.100000

Vote_Data_John_Kasich_Percent_of_Votes \

count 3592.000000
mean 12.111225
std 10.649826
min 0.000000
25% 3.900000
50% 8.450000
75% 17.500000
max 63.900000

Vote_Data_Marco_Rubio_Percent_of Votes \

count 3592.000000
mean 10.275768
std 9.123062
min 0.000000

20

25% 0.000000

50% 10.000000
75% 17.200000
max 62.700000

Vote_Data_Martin_OMalley_Percent_of_Votes \

count 3592.000000
mean 0.022884
std 0.366343
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 13.200000

Vote_Data_Mike_ Huckabee_Percent_of Votes \

count 3592.000000
mean 0.066676
std 0.479296
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 9.600000

Vote_Data_No_Preference_Party \

count 3592.0

mean 0.0

std 0.0

min 0.0

25% 0.0

50% 0.0

75% 0.0

max 0.0
Vote_Data_No_Preference_Percent_of_Votes \

count 3592.000000

mean 0.063363

std 0.243077

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 3.000000
Vote Data Rand_Paul Percent of Votes \

count 3592.000000

21

mean 0.093875

std 0.621383

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 9.600000
Vote_Data_Rick_Santorum_Percent_of_Votes \

count 3592.000000

mean 0.027450

std 0.232522

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 7.300000
Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \

count 3592.000000 3592.0

mean 24.025030 0.0

std 13.759378 0.0

min 0.000000 0.0

25% 12.000000 0.0

50% 21.700000 0.0

75% 34.700000 0.0

max 78.600000 0.0
Vote_Data_Uncommitted_Percent_of_Votes

count 3592.000000

mean 0.001253

std 0.036195

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 1.300000

[13]: sns.scatterplot(data=df_num)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()

22

100 4 x + Vote_Data_Ben_Carson_Percent_of _Votes
Vote_Data_Bernie_Sanders_Percent_of_Votes
Vote_Data_Carly_Fiorina_Percent_of Votes
Vote_Data_Chris_Christie_Percent_of Votes
Vote_Data_Denald_Trump_Percent_of Votes
Vote_Data_Hillary_Clinton_Percent_of_Votes
Vote_Data_Jeb_Bush_Percent_of Votes
Vote_Data_john_Kasich_Percent_of Votes
Vote_Data_Marco_Rubio_Percent_of Votes
Vote_Data_Martin_OMalley_Percent_of_Votes
Vote_Data_Mike_Huckabee_Percent_of Votes
Vote_Data_No_Preference_Party
Vote_Data_No_Preference_Percent_of Votes
Vote_Data_Rand_Paul_Percent_of Votes
Vote_Data_Rick_Santorum_Percent_of Votes
Vote_Data_Ted_Cruz_Percent_of Votes
Vote_Data_Uncommitted_Party
Vote_Data_Uncommitted_Percent_of Votes

* & % 0 X % % 0 x 4 x P+ 4+ 1RO

T T T T
0 1000 2000 3000 4000

1.3.2 3.2 For any categorical attributes, count up the number of observations of each
type.

[14]: df['Location_State'].value_counts() .sort_values(ascending=False)

[14]: Massachusetts 346
Texas 253
Vermont 229
Connecticut 169
Georgia 159
Virginia 133
Kentucky 120
Missouri 115
Illinois 103
North Carolina 100
Towa 99
Tennessee 95
Nebraska 93
Indiana 92
Ohio 88
Michigan 83
Mississippi 82
Oklahoma 7
Arkansas 74
Wisconsin 72
Alabama 67
Florida 67
Pennsylvania 67
South Dakota 66
Louisiana 64

23

New York 62

California 58
Montana 56
West Virginia 55
South Carolina 46
Idaho 44
Colorado 43
Rhode Island 41
Washington 39
Alaska 38
Oregon 36
New Mexico 33
Utah 29
Maryland 24
New Jersey 21
Nevada 16
Arizona 15
New Hampshire 10
Kansas 4
Hawaii 4
Delaware 3
Wyoming 1
Maine 1

Name: Location_State, dtype: int64

[15]: df['Location_County'].value_counts() .sort_values(ascending=False)

[15]: Washington 28
Jefferson 25
Franklin 24
Lincoln 22
Jackson 21
Seward 1
Seymour 1
Shackelford 1
Shaftsbury 1
Ziebach 1

Name: Location_County, Length: 2215, dtype: int64
[16]: df['Vote_Data_Ben_Carson_Party'].value_counts().sort_values(ascending=False)

[16]: Republican 3592
Name: Vote_Data_Ben_Carson_Party, dtype: int64

[17]: df['Vote_Data_Bernie_Sanders_Party'].value_counts() .sort_values(ascending=False)

24

[17]: Democrat 3592
Name: Vote_Data_Bernie_Sanders_Party, dtype: int64

[18]: df['Vote_Data_Rick_Santorum_Party'].value_counts().sort_values(ascending=False)

[18]: Republican 3592
Name: Vote_Data_Rick_Santorum_Party, dtype: int64

[19]: df['Vote_Data_Ted_Cruz_Party'].value_counts().sort_values(ascending=False)

[19]: Republican 3592
Name: Vote_Data_Ted_Cruz_Party, dtype: int64

1.3.3 3.3 Determine if there exist are any strong pairwise relationships between the
variables in your dataset

[20]: sns.heatmap(df_num.corr())
plt.show()

Vote_Data_Ben_Carson_Percent_of Votes - [1.00
Vote Data_Bernie_Sanders_Percent_of Votes
Vote_Data_Carly_Fiorina_Percent_of Votes -0.75
Vote_Data_Chris_Christie_Percent_of_Votes
Vote_Data_Denald_Trump_Percent_of_Votes 0.50
Vote_Data_Hillary_Clinton_Percent_of Votes
Viote_Data_Jeb Bush_Percent_of Votes 0.25
Vote_Data_John_Kasich_Percent_of_Votes
Vote_Data_Marco_Rubio_Percent_of Votes -
Vote_Data_Martin_OMalley_Percent_of_Votes 0.00
Vote Data_Mike Huckabee Percent_of Votes
Vote_Data_No_Preference_Party - -0.25
Vote_Data_No_Preference_Percent_of_Votes
Vote_Data_Rand_Paul_Percent_of_Votes ﬂ I —0.50
Vlote_Data_Rick_Santorum_Percent_of Votes
Viote_Data_Ted_Cruz_Percent_of Votes
Vote Data_Uncommitted Party - —0.75
Vote_Data_Uncommitted_Percent_of Votes m _

y_
y_

I
L Y T T T T I T I] (7 I T BT s | i
U U U 009 UuyuyEudyoug g
0o obbboobco6csoco6bD s D
>I >| >I >I 't""l >I >I }I >I >| >| n-l >| }I }I >| n-l >I
L T L el L THNL VL | R P T = T
6,5 5 6 5 5 GG 6506 Q6 06 5 o
cEececceEeeeccec®eEEEEC=ET
U U U U U d 0 U U U U g U O U U E ©
gEEEPERPREEEREEY EEYEEE
&ng&lvmuv&lmggmwmgo&l
BB Bt R By B B B B o o Mt B Bt IR BT
=
CW@mUocCcLoC O >U0 0TS ENST
Q g EEH E g WY g LUV Z Jg = | w
Eg':.ﬂ:“églﬁjﬁgmlgn.et)mﬂ;
T c 9 g =98x2 8808 8 1% E
U|$LL|U |Ug¥|o|ouN£E:EQE
C|>anEE.I‘UCU|EEIEmm}—Io
v = C 2 PRI - o a8 3
mE ™M Ec®@o B oo e h s c
mlaulﬁoz‘a‘gzlgxgoﬁu‘ig:;
“ om IQIIIDumEg Zlmn‘:D [
T L B L -y B @O g 3
O @ F £ 8 Y08 oo S e g]
e 08 @ ®mg 10 & = T W a
o m Iggg&uwlmm Dugg |
8924 885075 o =G o
u 8 5 2 o 2 ¢ o =]
£§°285%8 58 8 3 2
g £s 2

[21]:

sns.pairplot(data = df)
plt.show()

Wi T

From the above grahp, we can see there are mno strong relationship between
most variable. However, the ‘Vote Data_Bernie Sanders Percent of Votes’ and
‘Vote_ Data_ Hillary_ Clinton_ Percent_ of Votes’ have strong negative relation, which means if
the extend of people want to vote for Bernie Sanders, the extend of Hillary Clinton will decrease.

1.4 4. Dataset Scaling Decisions

Scaling data using the Min-Max Scaler means scaling the data to a fixed range of values, usually
[0,1] or [-1,1]. The difference between the two scaling methods using Standard Scaler and Min-Max

26

[22]:

[22]:

[23]:

[23]:

Scaler is that the scaling range of the data is different: Standard Scaler scales the data to a normal
distribution with a mean of 0 and a standard deviation of 1, while Min-Max Scaler scales the data
to a specified minimum and maximum value range.

The distribution range of the data is different: If the distribution range of the data is large, using
Standard Scaler may scale the data to a smaller range, resulting in the loss of some characteristic
information of the data. While using Min-Max Scaler can scale the data to a specified range and
keep more information about the data features.

Outliers in the data: If there are outliers in the data, using Standard Scaler may cause the scaling
range of the data to be affected by the outliers, thus affecting the performance of the model. Using
the Min-Max Scaler avoids this problem by scaling the outliers to a specified range.

Model requirements: Different models have different requirements for data scaling. For example,
some models (e.g., SVM) are more sensitive to data scaling, while others (e.g., decision trees) are
less sensitive to data scaling. Therefore, the needs of the model used need to be considered when
choosing a data scaling method.

In general, the choice of which scaling method to use should be based on the specific data set and
model. If the distribution of the data is relatively large or there are outliers, it is recommended
to use the Min-Max Scaler; if the distribution of the data is closer to normal or the model is not
sensitive to data scaling, the Standard Scaler can be used.

scale = StandardScaler()
df _scalel = scale.fit_transform(df_num)
df _scalel

array([[1.56054152, -1.67911137, -0.13917705, .., -0.00908819,

0. , —0.03461736],

[-0.05567791, 0.29993386, -0.13917705, .., -1.02671774,
0. , —0.03461736],

[-0.75232422, -0.89619238, -0.13917705, .., 1.0303477 ,
0. , —0.03461736],

seey

[0.55737084, -1.3202735 , -0.13917705, .., 0.95765988,

0. , -0.03461736],

[-0.75232422, -1.61930506, -0.13917705, .., —-1.74632721,
0. , -0.03461736],

[-0.75232422, 0.59896542, -0.13917705, .., -0.16900141,
0. , -0.03461736]11)

Z = pd.DataFrame(df_scalel, columns=df_num.columns)

VA
Vote_Data_Ben_Carson_Percent_of_Votes \
0 1.560542
1 -0.055678
2 -0.752324
3 1.894932
4 -0.111410

27

3587
3588
3589
3590
3591

s W N —- O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

-0.752324
-0.752324

0.557371
-0.752324
-0.752324

Vote_Data_Bernie_Sanders_Percent_of_Votes
-1.679111

0.299934

-0.896192

-1.113670

-0.058904

0.174884
-0.890755
-1.320274
-1.619305

0.598965

Vote_Data_Carly_Fiorina_Percent_of_Votes
-0.139177
-0.139177
-0.139177
-0.139177
-0.139177

-0.139177
-0.139177
-0.139177
-0.139177
-0.139177

Vote_Data_Chris_Christie_Percent_of_Votes
-0.123449
-0.123449
-0.123449
-0.123449
-0.123449

-0.123449
-0.123449
-0.123449
-0.123449
-0.123449

Vote_Data_Donald_Trump_Percent_of_Votes

28

\

\

s W NN -, O

3587
3588
3589
3590
3591

s W NN - O

3587
3588
3589
3590
3591

s W NN - O

3587
3588
3589
3590
3591

s W N - O

3587
3588

-0.586214
0.732167
-0.109086
0.104367
-1.132400

2.295390
0.204815
-0.422986
-2.902798
1.410192

Vote_Data_Hillary_Clinton_Percent_of_Votes

1.
-0.
0.244088
1.
0.194239

Vote_Data_Jeb_Bush_Percent_of_Votes

.460023
.168983
.168983
.168983
.168983

.168983
.168983
.168983
.168983
.168983

800480
259940

257681

.160242
. 797964
.025053
.451538
-0.

453796

\

Vote_Data_John_Kasich Percent_of Votes \
-0.733563
0.196160
-0.818083
-0.677216
1.914737

-0.658433
-0.583304

29

\

3589 -1.137381
3590 -1.137381
3591 -0.235833

Vote_Data_Marco_Rubio_Percent_of_Votes \

0 1.087969
1 0.265763
2 0.035545
3 1.164709
4 1.603219
3587 -1.126508
3588 -1.126508
3589 0.276725
3590 -1.126508
3591 -1.126508

Vote_Data_Martin_OMalley_Percent_of_Votes \

0 -0.062475
1 -0.062475
2 -0.062475
3 -0.062475
4 -0.062475
3587 -0.062475
3588 -0.062475
3589 -0.062475
3590 -0.062475
3591 -0.062475

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_ Party \

0 -0.139132 0.0
1 -0.139132 0.0
2 -0.139132 0.0
3 -0.139132 0.0
4 -0.139132 0.0
3587 -0.139132 0.0
3588 -0.139132 0.0
3589 -0.139132 0.0
3590 -0.139132 0.0
3591 -0.139132 0.0

Vote_Data_No_Preference_Percent_of Votes \

0 -0.260707
1 4.676696
2 -0.260707

30

3 -0.260707

4 0.562193
3587 -0.260707
3588 -0.260707
3589 -0.260707
3590 -0.260707
3591 -0.260707

Vote_Data_Rand Paul Percent of Votes \

0 -0.151096
1 -0.151096
2 -0.151096
3 -0.151096
4 -0.151096
3587 -0.151096
3588 -0.151096
3589 -0.151096
3590 -0.151096
3591 -0.151096

Vote_Data_Rick_Santorum_Percent_of Votes \

0 -0.118069
1 -0.118069
2 -0.118069
3 -0.118069
4 -0.118069
3587 -0.118069
3588 -0.118069
3589 -0.118069
3590 -0.118069
3591 -0.118069

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \

0 -0.009088 0.0
1 -1.026718 0.0
2 1.030348 0.0
3 -0.590591 0.0
4 -1.113943 0.0
3587 -1.150287 0.0
3588 0.347082 0.0
3589 0.957660 0.0
3590 -1.746327 0.0
3591 -0.169001 0.0

31

[24]:

[24] :

[25] :

[25] :

Vote_Data_Uncommitted_Percent_of_ Votes

s W NN - O

3587
3588
3589
3590
3591

-0.034617
-0.034617
-0.034617
-0.034617
-0.034617

-0.034617
-0.034617
-0.034617
-0.034617
-0.034617

[3592 rows x 18 columns]

df ['Location_State']

0 South Carolina
2 Massachusetts
3 Louisiana
4 Virginia
5 Massachusetts
4210 California
4211 Arizona
4213 Texas
4214 Texas
4215 South Dakota

Name: Location_State, Length: 3592, dtype: object

df .reset_index(inplace
C = df ['Location_State
frames = [C,Z]

=True)

']

df_label_standard = pd.concat(frames,axis =

df label_standard

Location_State

0] South Carolina
1 Massachusetts
2 Louisiana
3 Virginia
4 Massachusetts
3587 California
3588 Arizona
3589 Texas

Vote_Data_Ben_Carson_Percent_of_Votes

32

.5605642
.055678
. 752324
.894932
.111410

. 752324
. 752324
.557371

\

3590
3591

s W N - O

3587
3588
3589
3590
3591

s W N~ O

3587
3588
3589
3590
3591

s W N~ O

3587
3588
3589
3590
3591

w N =~ O

Texas
South Dakota

Vote_Data_Bernie_Sanders_Percent_of_Votes
.679111
0.299934
.896192
.113670
.058904

0.174884
.890755
.320274
.619305
0.598965

_Votes
.139177
.139177
.139177
.139177
.139177

.139177
.139177
.139177
.139177
.139177

Vote_Data_Chris_Christie_Percent_of_Votes
.123449
.123449
.123449
.123449
.123449

.123449
.123449
.123449
.123449
.123449

Vote_Data_Donald_Trump_Percent_of_Votes
-0.586214

0.732167

-0.109086

0.104367

33

\

\

-0.752324
-0.752324

3587
3588
3589
3590
3591

s W NN - O

3587
3588
3589
3590
3591

> W NN - O

3587
3588
3589
3590
3591

> W NN - O

3587
3588
3589
3590
3591

-1.132400

2.295390
0.204815
-0.422986
-2.902798
1.410192

Vote_Data_Hillary_Clinton_Percent_of_Votes \
1.800480
-0.259940
0.244088
1.257681
0.194239

-0.160242
0.797964
1.025053
1.451538

-0.453796

Vote_Data_Jeb_Bush_Percent_of_Votes \
5.460023
-0.168983
-0.168983
-0.168983
-0.168983

-0.168983
-0.168983
-0.168983
-0.168983
-0.168983

Vote_Data_John_Kasich Percent of Votes \
-0.733563
0.196160
-0.818083
-0.677216
1.914737

-0.658433
-0.583304
-1.137381
-1.137381
-0.235833

34

Vote_Data_Marco_Rubio_Percent_of Votes \

0 1.087969
1 0.265763
2 0.035545
3 1.164709
4 1.603219
3587 -1.126508
3588 -1.126508
3589 0.276725
3590 -1.126508
3591 -1.126508

Vote_Data_Martin_OMalley_Percent_of_Votes \

0 -0.062475
1 -0.062475
2 -0.062475
3 -0.062475
4 -0.062475
3587 -0.062475
3588 -0.062475
3589 -0.062475
3590 -0.062475
3591 -0.062475

Vote_Data_Mike_ Huckabee_Percent_of_Votes Vote_Data_No_Preference_ Party \

0 -0.139132 0.0
1 -0.139132 0.0
2 -0.139132 0.0
3 -0.139132 0.0
4 -0.139132 0.0
3587 -0.139132 0.0
3588 -0.139132 0.0
3589 -0.139132 0.0
3590 -0.139132 0.0
3591 -0.139132 0.0

Vote_Data_No_Preference_Percent_of_Votes \

0 -0.260707
1 4.676696
2 -0.260707
3 -0.260707
4 0.562193
3587 -0.260707

35

3588 -0.260707

3589 -0.260707
3590 -0.260707
3591 -0.260707

Vote_Data_Rand_Paul Percent_of Votes \

0 -0.151096
1 -0.151096
2 -0.151096
3 -0.151096
4 -0.151096
3587 -0.151096
3588 -0.151096
3589 -0.151096
3590 -0.151096
3591 -0.151096

Vote Data_ Rick_Santorum_Percent of Votes \

0 -0.118069
1 -0.118069
2 -0.118069
3 -0.118069
4 -0.118069
3587 -0.118069
3588 -0.118069
3589 -0.118069
3590 -0.118069
3591 -0.118069

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \

0 -0.009088 0.0
1 -1.026718 0.0
2 1.030348 0.0
3 -0.590591 0.0
4 -1.113943 0.0
3587 -1.150287 0.0
3588 0.347082 0.0
3589 0.957660 0.0
3590 -1.746327 0.0
3591 -0.169001 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 -0.034617
1 -0.034617

36

2 -0.034617

3 -0.034617
4 -0.034617
3587 -0.034617
3588 -0.034617
3589 -0.034617
3590 -0.034617
3591 -0.034617

[3592 rows x 19 columns]

[26]: scaler = MinMaxScaler()
df_scale = pd.DataFrame(scaler.fit_transform(df_num),columns=df_num.columns,);
df _num =df_scale.copy()

df _scale
[26]: Vote_Data_Ben_Carson_Percent_of _Votes \

0 0.382488
1 0.115207
2 0.000000
3 0.437788
4 0.105991
3587 0.000000
3588 0.000000
3589 0.216590
3590 0.000000
3591 0.000000

Vote_Data_Bernie Sanders Percent of Votes \

0 0.170
1 0.534
2 0.314
3 0.274
4 0.468
3587 0.511
3588 0.315
3589 0.236
3590 0.181
3591 0.589
Vote_Data_Carly_Fiorina_Percent_of_Votes \

0] 0.0

1 0.0

2 0.0

37

3587
3588
3589
3590
3591

S W N~ O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

o
o

o
o

O O O O O
O O O O O

Vote_Data_Chris_Christie_Percent_of_Votes

0.

Vote_Data_Donald_Trump_Percent_of_Votes

0.
.632787
.486339
.523497
.308197

o O O O

O O O O O

403279

.904918
.540984
.431694
.000000
. 750820

o O O O

O O O O O
O O O O O

O O O O O

Vote_Data_Hillary_Clinton_Percent_of_Votes

0.

O O O O

O O O O O

38

818

.446
.537
.720
.528

.464
.637
.678
.755
.411

\

\

s W NN - O

3587
3588
3589
3590
3591

s W N - O

3587
3588
3589
3590
3591

s wWw N —- O

3587
3588
3589
3590
3591

s W N~ O

Vote_Data_Jeb Bush Percent of Votes \
528926

0.
.000000
.000000
.000000
.000000

o O O O

O O O O O

.000000
.000000
.000000
.000000
.000000

Vote_Data_John_Kasich_Percent_of_Votes

0.
.222222
.0563208
.076682
.508607

O O O O

O O O O O

067293

.079812
.092332
.000000
.000000
.150235

Vote_Data_Marco_Rubio_Percent_of_Votes

0.
.20256562
.169059
.333333
.397129

o O O O

O O O O O

322169

.000000
.000000
.204147
.000000
.000000

\

Vote_Data_Martin_0OMalley_Percent_of_Votes

39

0.

O O O O
o O O O

0

\

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_ Party \

0 0.0 0.0

1 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

3587 0.0 0.0

3588 0.0 0.0

3589 0.0 0.0

3590 0.0 0.0

3591 0.0 0.0
Vote_Data_No_Preference_Percent_of Votes \

0 0.000000

1 0.400000

2 0.000000

3 0.000000

4 0.066667

3587 0.000000

3588 0.000000

3589 0.000000

3590 0.000000

3591 0.000000
Vote_Data_Rand_Paul_Percent_of _Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Rick_Santorum Percent of Votes \

0 0.0

40

W N -
O O O O
o O O O

3587

0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0
Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 0.304071 0.0
1 0.125954 0.0
2 0.486005 0.0
3 0.202290 0.0
4 0.110687 0.0
3587 0.104326 0.0
3588 0.366412 0.0
3589 0.473282 0.0
3590 0.000000 0.0
3591 0.276081 0.0
Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

[3592 rows x 18 columns]

[27]: X = pd.DataFrame(df_scale, columns=df_num.columns)

X
[27]: Vote_Data_Ben_Carson_Percent_of Votes \
0 0.382488
1 0.115207
2 0.000000
3 0.437788

41

3587
3588
3589
3590
3591

s W NN - O

3587
3588
3589
3590
3591

> W NN - O

3587
3588
3589
3590
3591

> W NN - O

3587
3588
3589
3590
3591

0.105991

.000000
.000000
.216590
.000000
.000000

O O O O O

Vote_Data_Bernie_Sanders_Percent_of_Votes

0.
.534
.314
.274
.468

O O O O

O O O O O

170

.511
.315
.236
.181
.589

Vote_Data_Carly_Fiorina_Percent_of_Votes

0.

O O O O O
O O O O O

O O O O

O O O O O

Vote_Data_Chris_Christie_Percent_of_ Votes

42

0.

o O O O
O O O O O

O O O O O
O O O O O

\

S W N - O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

S W N ~e O

3587
3588
3589
3590
3591

S W NN - O

3587

Vote_Data_Donald_Trump_Percent_of_Votes

0.

o O O O

O O O O O

403279
.632787
.486339
.523497
.308197

.904918
.540984
.431694
.000000
. 750820

\

Vote_Data_Hillary_Clinton_Percent_of_Votes

0.

O O O O

O O O O O

Vote_Data_Jeb_Bush_Percent_of_Votes \
528926

0.
.000000
.000000
.000000
.000000

O O O O

O O O O O

.000000
.000000
.000000
.000000
.000000

Vote_Data_John_Kasich_Percent_of_Votes
0.
.222222
.053208
.076682
.508607

o O O O

067293

.079812

43

818

.446
.537
. 720
.528

.464
.637
.678
.755
411

\

3588 0.092332

3589 0.000000
3590 0.000000
3591 0.150235

Vote_Data_Marco_ Rubio Percent_of Votes \

0 0.322169

1 0.202552

2 0.169059

3 0.333333

4 0.397129

3587 0.000000

3588 0.000000

3589 0.204147

3590 0.000000

3591 0.000000
Vote_Data_Martin_OMalley_Percent_of_Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \

0 0.0 0.0

1 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

3587 0.0 0.0

3588 0.0 0.0

3589 0.0 0.0

3590 0.0 0.0

3591 0.0 0.0
Vote_Data_No_Preference_Percent_of Votes \

0 0.000000

1 0.400000

44

2 0.000000

3 0.000000

4 0.066667

3587 0.000000

3588 0.000000

3589 0.000000

3590 0.000000

3591 0.000000
Vote_Data_Rand_Paul_Percent_of _Votes \

0] 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Rick_Santorum Percent of Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \

0 0.304071 0.0

1 0.125954 0.0

2 0.486005 0.0

3 0.202290 0.0

4 0.110687 0.0

3587 0.104326 0.0

3588 0.366412 0.0

3589 0.473282 0.0

3590 0.000000 0.0

45

[28]:

[28]:

3591

0.276081

Vote_Data_Uncommitted_Percent_of_Votes
0.

S W N - O

3587
3588
3589
3590
3591

[3592 rows x 18 columns]

C = df ['Location_State']

frames = [C,X]

df_label = pd.concat(frames,axis = 1)

df _label

Location_State

0 South Carolina
1 Massachusetts
2 Louisiana
3 Virginia
4 Massachusetts
3587 California
3588 Arizona
3589 Texas
3590 Texas

3591 South Dakota

O O O O

O O O O O
O O O O O

O O O O O

Vote_Data_Ben_Carson_Percent_of_Votes

Vote_Data_Bernie_Sanders_Percent_of_Votes
0.
.534
.314
.274
.468

S W NN - O

3587
3588
3589
3590
3591

46

O O O O

O O O O O

170

.511
.315
.236
.181
.589

\

0.
.115207
.000000
.437788
.105991

O O O O

o oo oo,

382488

.000000
.000000
.216590
.000000
.000000

\

0.0

s W NN - O

3587
3588
3589
3590
3591

s W N - O

3587
3588
3589
3590
3591

s W N - O

3587
3588
3589
3590
3591

s W N - O

Vote_Data_Carly_Fiorina_Percent_of_Votes

Vote_Data_Chris_Christie_Percent_

0.

O O O O
O O O O O

O O O O O
O O O O O

of _Votes
0.0

o O O O
o O O O

O O O O O
O O O O O

Vote_Data_Donald_Trump_Percent_of_Votes \

0.
.632787
.486339
.523497
.308197

O O O O

O O O O O

403279

.904918
.540984
.431694
.000000
.750820

Vote_Data_Hillary_Clinton_Percent_of_Votes

0.818
0.446
0.537
0.720
0.528

47

\

\

\

3587
3588
3589
3590
3591

S W NN - O

3587
3588
3589
3590
3591

s W NN - O

3587
3588
3589
3590
3591

s W NN -, O

3587
3588
3589
3590
3591

O O O O O

Vote_Data_Jeb_Bush_Percent_of_Votes \
528926

0.
.000000
.000000
.000000
.000000

o O O O

O O O O O

.000000
.000000
.000000
.000000
.000000

Vote_Data_John_Kasich_Percent_of_Votes

0.
. 222222
.053208
.076682
.508607

O O O O

O O O O O

067293

.079812
.092332
.000000
.000000
.150235

Vote_Data_Marco_Rubio_Percent_of_Votes

0.
.202552
.1690569
.333333
.397129

O O O O

O O O O O

322169

.000000
.000000
.204147
.000000
.000000

.464
.637
.678
.755
411

Vote_Data_Martin_0Malley_Percent_of_Votes

48

0.0

\

W N -
o O O O
o O O O

3587

0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \

0 0.0 0.0

1 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

3587 0.0 0.0

3588 0.0 0.0

3589 0.0 0.0

3590 0.0 0.0

3591 0.0 0.0
Vote_Data_No_Preference_Percent_of_Votes \

0 0.000000

1 0.400000

2 0.000000

3 0.000000

4 0.066667

3587 0.000000

3588 0.000000

3589 0.000000

3590 0.000000

3591 0.000000
Vote_Data_Rand_Paul_Percent_of_Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

49

3590 0.0
3591 0.0

Vote_Data_Rick_Santorum Percent of Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \

0 0.304071 0.0

1 0.125954 0.0

2 0.486005 0.0

3 0.202290 0.0

4 0.110687 0.0

3587 0.104326 0.0

3588 0.366412 0.0

3589 0.473282 0.0

3590 0.000000 0.0

3591 0.276081 0.0
Vote_Data_Uncommitted_Percent_of_ Votes

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0

[3592 rows x 19 columns]

[29]: df cata
df _cata
df _cata

df .select_dtypes(include=['object', 'category'l)
[df cata,X]
pd.concat(df_cata,axis = 1)

50

[29]:

df _cata = df_cata.drop(['Location_County'],axis = 1)
df cata.head()

Location_State Location_State_Abbreviation Vote_Data_Ben_Carson_Party \

0 South Carolina SC Republican
1 Massachusetts MA Republican
2 Louisiana LA Republican
3 Virginia VA Republican
4 Massachusetts MA Republican

Vote_Data_Bernie_Sanders_Party Vote_Data_Carly_Fiorina_Party \

0 Democrat Republican
1 Democrat Republican
2 Democrat Republican
3 Democrat Republican
4 Democrat Republican

Vote_Data_Chris_Christie_Party Vote_Data_Donald_Trump_Party \

0 Republican Republican
1 Republican Republican
2 Republican Republican
3 Republican Republican
4 Republican Republican

Vote_Data_Hillary_Clinton_Party Vote_Data_Jeb_Bush_Party \

0 Democrat Republican
1 Democrat Republican
2 Democrat Republican
3 Democrat Republican
4 Democrat Republican

Vote_Data_John_Kasich_Party .. Vote_Data_Marco_Rubio_Percent_of_Votes \

0 Republican 0.322169
1 Republican 0.202552
2 Republican 0.169059
3 Republican 0.333333
4 Republican 0.397129

Vote_Data_Martin_OMalley_Percent_of_Votes \

0 0.0
1 0.0
2 0.0
3 0.0
4 0.0

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0

51

W N -

O O O O
O O O O

Vote_Data_No_Preference_Percent_of_Votes

s wWw N —- O

0.000000
0.400000
0.000000
0.000000
0.066667

Vote Data_Rand_Paul Percent of Votes \

s W N ~- O

0.0

O O O O
o O O O

Vote_Data_Rick_Santorum_Percent_of_Votes

s W NN - O

Vote_Data_Ted_Cruz_Percent_of_Votes

S W NN - O

0.0
0.0
0.0
0.0
0.0

0.304071
0.125954
0.486005
0.202290
0.110687

Vote_Data_Uncommitted_Percent_of_Votes

S W N - O

[5 rows x 34 columns]

0.0
0.0

0.0
0.0
0.0

92

\

\

O O O O
o O O O

0

Vote_Data_Uncommitted_Party \
0.

O O O O

O O O O

1.5 5. Clusterability and Clustering Structure Questions

[28]: for perp in [5,10, 20, 30, 40, 50]:
for rs in [50,100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)

df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',
<'y_projected'])

df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s',
~%(perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize

= 5)
plt.show()

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument

t-SNE Plot with Perplexity Value 5 and Random State 50

100 A
50 4
=
g
2 07
2
J
_50, -
—100 ~
.
T T T T T
-100 -50 0 50 100
¥ _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

53

t-SNE Plot with Perplexity Value 5 and Random State 100

100 ~
50 ~
=]
2
@ 0
e
R
_5{}]
—100 ~
T T T T T
—=100 —50 0 50 100
X _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

54

t-SNE Plot with Perplexity Value 10 and Random State 50

100 -

75

50 ~

y_projected

_25 .

_5{} .

_?5 .

—100 A

T T T T
—=100 75 —50 —25 1] 25 50 75
X _projected

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

95

t-SMNE Plot with Perplexity Value 10 and Random State 100
100

75 1

50 +

25 1

_25 .

y_projected

_5{} .

—75 4

—100 A

T T T T T T T T
—100 =75 —50 —25
X _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

56

t-SNE Plot with Perplexity Value 20 and Random State 50

y_projected

—100 -

T T T T T T
75 —50 —25
X _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

o7

t-SNE Plot with Perplexity Value 20 and Random State 100

75

50

25 4

y_projected
L]

254 &
5(}

_?5 -

T T T
—75 —=50 —25 0
% _projected

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

o8

t-SNE Plot with Perplexity Value 30 and Random State 50

80 4

PO
60

y_projected

_4{} -
_6{} .
_Bﬂ. -
T T T T T T T
—80 —60 —40 —-20 0] 20 40 60
% _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

99

t-SNE Plot with Perplexity Value 30 and Random State 100

60 ~

y_projected
o

_2{} -

_4{} -

_.ﬁﬂ, -

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

60

t-SNE Plot with Perplexity Value 40 and Random State 50

60
40 -
= ED -
g
Ll
=
(=)
5o
=
_2{} -
_4{} .
T T T T T T T T
—80 —60 —40 —20 0 20 40 60
% _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

61

t-SNE Plot with Perplexity Value 40 and Random State 100

y_projected

T T T T T
—60 —40

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

62

t-SNE Plot with Perplexity Value 50 and Random State 50

y_projected

T T T
—60 —40

T T T T
=20]
% _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

63

t-SNE Plot with Perplexity Value 50 and Random State 100

y_projected

T T T
=20)]

[29]:

1f we choose the location of state is the pre-assigned label and colorer it,
~%n the t-sne plot
for perp in [5,10, 20, 30, 40, 50]:
for rs in [50,100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)

df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',
<'y_projected'])

df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =
~"Location_State",data=df_combo)

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s',
<% (perp, rs))

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize
plt.show()

= 5)

64

y_projected

t-SNE Plot with Perplexity Value 5 and Random State 50

'ih
m‘iq.

100 A
%‘ﬂF ﬁls'.
50 - o2 & e
) ’qaﬁﬁ tﬁ’]
‘- &g'%. S:ﬁgu
* 50l » @2
o] Y A L
M RN AN
ol
—50 - ..%’:I& I %
o Ce 07
o
B S
L3
—1I00 —I50 {I) 5I0 1EI)0
X_projected

65

@ south Carolina
Messachusests
Loulsiana
‘Wrginia
L=L1]

o
E=ntucky
Mo

Ok b haoma
Colarado
Minails
Indlana
Mississinpl
Mebraskn
Ohic
Fennsylvania
Wshingtan
wiscansin
wermant
Aovida
Marth Carolina
California
Bew ork
Michigan
ssryiann
Ennesses
Exan
Connecticut
HArizona
Grorgia
Arkarsas
Mew Jersey
South Dakota
HAabama
oregen

Mew Hampshire
Mew Mexioo
Mevads

Eansas

Hawall
Celaware
iyomireg

Mmine

Haskn

t-SNE Plot with Perplexity Value 5 and Random State 100

100 +

50 +

y_projected

—50 1

—100 -

X_projected

66

@ south Carolina
Messachusests
Loulsiana
‘Wrginia
L=L1]

o
E=ntucky
Mo

Ok b haoma
Colarado
Minails
Indlana
Mississinpl
Mebraskn
Ohic
Fennsylvania
Wshingtan
wiscansin
wermant
Aovida
Marth Carolina
California
Bew ork
Michigan
ssryiann
Ennesses
Exan
Connecticut
HArizona
Grorgia
Arkarsas
Mew Jersey
South Dakota
HAabama
oregen
WSt Virginis
Rhade Island
Lesh
Bontana
Mew Hampshire
Mew Mexioo
Mevads
Eansas
Hawall
Celaware
iyomireg
Mmine

Haskn

y_projected

t-SNE Plot with Perplexity Value 10 and Random State 50

100 ~

75+

50 +

_25 -

_50 -

_75 -

=100 -

=100

—75

=50

T
—25

0
X_projected

67

Sowth Caralina
Messachusests
Loulsiana
‘Wrginia

L=L1]

o
E=ntucky
Mo

Ok b haoma
Colarado
Minails
Indlana
Mississinpl
Mebraskn
Ohic
Fennsylvania
Wshingtan
wiscansin
wermant
Aovida

Marth Carolina
California
Bew ork
Michigan
ssryiann
Ennesses
Exan
Connecticut
HArizona
Grorgia
Arkarsas
Mew Jersey
South Dakota
HAabama
oregen
WSt Virginis
Rhade Island
Lesh

Bontana

Mew Hampshire
Mew Mexioo
Mevads

Eansas

Hawall
Celaware
iyomireg

Mmine

Haskn

t-SNE Plot with Perplexity Value 10 and Random State 100
100 ~ @ south Carolina

MEssAChUsEtts
Loulsiana
rginia

: daha

o

75 -
E=ntucky
Mo
Ok b haoma
50 Colarain
Minails
Indlana
Mississinpl
Mebraskn
Ohic
Fennsylvania
- Wiashingtan
wiscansin
wermant
Aovida
Marth Carolina
California
Bew ork
Michigan
ssryiann
Ennesses
Exan
Connecticut
HArizona
Grorgia
Arkarsas
Mew Jersey

25 A

n_

y_projected

—25 1
_50 -

_75 -
South Daknta
Habama
aregon
=100 1 Wiest Wirginis
Rhode Island
ush

T T T T T T T T T I\'::b:':r.npshlr:
=100 =75 =50 —25 0 25 50 75 100 Mew Mexica
X _projected o
Hawall
Delaware
tyomirg
Msine
Haska

68

t-SNE Plot with Perplexity Value 20 and Random State 50

100 +

75+

wn
=]
1

kJ
un
1

(=]
L

Aovida

Marth Carolina
California
Bew ork
Michigan
ssryiann
Ennesses
Exan
Connecticut
HArizona
Grorgia
Arkarsas
Mew Jersey
South Dakota
HAabama
oregen
WSt Virginis
Rhade Island

Leah
—100 T T T T T T T : Montana
Mew Hampshire

—75 =50 —25 0 25 50 75 Hew Mexica
- Mevads
X_projected ’ farsas

Herwall
Celaveane
“Wilyomireg
Bminge

: Haska

y_projected
|
o]
wn
1

&
o
I

=75 1

69

t-SNE Plot with Perplexity Value 20 and Random State 100

@ sowth Caroling
Messachusetts

! Hinals.
indians
Mississiopl
Mebraska
Ohi
Fennsylvanis
‘Wiashingtan
wdsconsin
weErmant
Aorids
Marth Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas
Mew jersey
South Dakota

75 1

50 +

y_projected
b N
wn o w
I I 1
%

|
un
o

L

HAabama
oregon
‘Wiest Virginia

|
-~
u
Il

Momtans

MeEw Hampshire
Mew Mekioo
Mevada

T T
75 —=50 —25 0 25 50 75
x_projected

Eansas
Hawall
Celaware

70

y_projected

t-SNE Plot with Perplexity Value 30 and Random State 50

T
—60

T
—40

T
=20

0
x_projected

71

40

60

@ sowth Caroling
Messachusetts

! Hinals.
indians
Mississiopl
Mebraska
Ohi
Fennsylvanis
‘Wiashingtan
wdsconsin
weErmant
Aorids
Marth Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas
Mew jersey
South Dakota

HAabama
oregon
‘Wiest Virginia

Momtans

MeEw Hampshire
Mew Mekioo
Mevada

EAnsas

Hawall
Celaware

t-SNE Plot with Perplexity Value 30 and Random State 100

60 -

40

y_projected
[l
o =]
I i

|
FJ
o
1

—40

—B0

x_projected

72

@ sowth Caroling
Messachusetts

! Hinals.
indians
Mississiopl
Mebraska
Ohi
Fennsylvanis
‘Wiashingtan
wdsconsin
weErmant
Aorids
Marth Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas
Mew jersey
South Dakota
HAabama

aregan
‘Wiest Virginia

Momtans

Mew Mekioo

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 50

60 -

40

J
=)
1

o
]

—20 1

_40 -

T
—80

T
—60

T
—40

T
=20 0
x_projected

73

@ sowth Caroling
Messachusetts

! Hinals.
indians
Mississiopl
Mebraska
Ohi
Fennsylvanis
‘Wiashingtan
wdsconsin
weErmant
Aorids
Marth Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas
Mew jersey
South Dakota

HAabama
oregon
‘Wiest Virginia
Momtans

Mew Mekioo

t-SNE Plot with Perplexity Value 40 and Random State 100

60

o
=)
1

MJ
=]
1

y_projected
=

_20 -
_40 -
—60
T T T T
—60 —40 =20 0
x_projected

74

20

40

60

@ sowth Caroling
Messachusetts

! Hinals.
indians
Mississiopl
Mebraska
Ohi
Fennsylvanis
‘Wiashingtan
wdsconsin
weErmant
Aorids
Marth Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas

Mew jersey
South Dakota
HAabama
Oregon
‘Wiest Virginia

Momtans

Mew Mekioo

y_projected

t-SNE Plot with Perplexity Value 50 and Random State 50

@ sowth Caroling
Messachusetts

! Hinals.
indians
Mississiopl
Mebraska
Ohi
Fennsylvanis
‘Wiashingtan
wdsconsin
weErmant
Aorids
Marth Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas

Mew jersey
South Dakota
HAabama
Oregon
‘Wiest Virginia

T T T T Momtans

T T
—60 —40 =20 0 20 40 60
x_projected

Mew Mekioo

75

t-SNE Plot with Perplexity Value 50 and Random State 100

@ sowth Caroling
Meszachusetis
Loutsiana
‘rginia

' dnha

owa

Ee=ntucky

Miszourl

Ok lahama

Colorad o

Hinals

indians

Mssissiopl

Mebraska

Ohi

FEnnsylvania

‘Wiashingtan

wdsconsin

weErmant

Aorids

Bartn Carolina

Califarnia

Mew York

Mchigan

Maryland

Ennesses

Exas

Connecticut

Arizana

Georgla

Arkansas

Mew jersey

South Dakota

HAabama

Oregon

Wiest Virginia

RAhade Island

' Lksh
' ' ' ' ' ' wew rampire
-60 —40 -20 0 20 40 e esica

- Mevada

¥_projected tanzns
Hawall
Delaware

y_projected

Witpomirg

Mmine
Haskn

[30]: num_trials=10
hopkins_stats=[]
for i in range(0,num_trials):
n = len(X)
p = int(0.1 * n)
hopkins_stats.append (hopkins (X,p))
print (hopkins_stats)

[0.04070630045751869, 0.03929863065307637, 0.0397228717346078,
0.03817619119068465, 0.03718203368349326, 0.04121653438793144,
0.04139403559241479, 0.042184529046137245, 0.03970703705773819,
0.03955241995398281]

Because many of these Hopkins statistics are closer to 0 than they are to 0.5, the Hopkin’s statistic
suggests that the dataset is clusterable.

[31]: X.shape

[31]: (3592, 18)

76

[47]:

1.6 6. Algorithm Selection Motivation
We chose K-means and HAC algorithms

We perform clustering analysis for the pre-assigned label of location state, so the clustering algo-
rithm is what we need to present. Secondly we throw out the ranks of number, so the data is
presented as a percentage. The values of percentages float from 0-1, plus we removed the states
with small numbers so it is not easy to have outliers.

The type variable only represents the party that the voter is running for, and given that the type
variables for parties are in a repeating pattern, they are less meaningful for classification. We do
not consider the analysis of type variables

By looking at our t-SNE plot, we can see that this dataset is clusterable. This is very suitable for
using simple and practical clustering algorithms like k-means.

K-means is a commonly used unsupervised learning algorithm for clustering data points based on
their similarity. K-means can be a useful algorithm for analyzing presidential election datasets, but
its applicability depends on the specific structure and characteristics of the data and the selection
of Other unsupervised learning algorithms such as hierarchical clustering, principal component
analysis (PCA) and t-SNE may also be worth considering, depending on the specific structure and
characteristics of the data and the selection of features used for clustering. Other unsupervised
learning algorithms such as hierarchical clustering, principal component analysis (PCA) and t-SNE
may also be worth considering, depending on the goals of the analysis and the nature of the data.

Hierarchical classification: This is a clustering algorithm that creates a hierarchy of clusters that can
be visualized as a tree diagram, called a dendrogram. Hierarchical classification can be performed
using either the aggregation method or the segmentation method. Aggregative clustering starts
with each data point as its own cluster and then iteratively merges the most similar clusters until
a single cluster is obtained that contains all data points. Split clustering, on the other hand, starts
with all data points in one cluster and then iteratively divides that cluster into smaller clusters until
each data point is in its own cluster. Hierarchical clustering is useful for identifying relationships
between clusters, and for identifying subgroups within larger clusters.

1.7 7. Clustering K-means
1.7.1 7.1. Parameter Selection

cluster_num_list=range(1,8)
avg_inertia_list=[]
for k in cluster_num_list:
print('k= '+str(k))
sub_inertia list=[]
for i in range(0,3):
kmeans=KMeans (n_clusters=k) .fit (X)
sub_inertia_list.append(kmeans.inertia_)
avg_inertia_list.append(np.average(sub_inertia_list))

plt.plot(cluster_num_list,avg_inertia_list)

plt.xlabel('Number of Clusters Requested in K-means')
plt.ylabel('Average Inertia of the K-Means Results (3 trials)')

77

plt.title('Elbow Method Results for Artificial Data')
plt.show()

b
1
~NOo Ok W e

Elbow Method Results for Artificial Data

800

700 -

600 1

500 A

400

Average Inertia of the K-Means Results (3 trials)

1 2 3 4 5 6
Number of Clusters Requested in K-means

[120] : Ymatplotlib inline
silhouette_scores = []
for k in range(2, 50):
kmeans = KMeans(n_clusters=k, random_state=0)
labels = kmeans.fit_predict (X)
score = silhouette_score(X, labels)
silhouette_scores.append(score)

78

plt.plot(range(2, 50), silhouette_scores)
plt.xlabel ('Number of clusters')
plt.ylabel('Silhouette score')

plt.show()

0.34 1

0.32 7

0.30

Silhouette score

0.28

0.26

T
0 10 20 30 40 50
Mumber of clusters

We are choosing Silhouette score at around 0.35, which cluster K = 13. Because we can see the
elbow plot didn’t give us a good vision of the cluster. Thus, it is reasonable to choose k = 13.

1.7.2 7.2. Clustering Algorithm

Recall the t-SNE plot, we find the perp with 40 and random state with 100, it has a pretty good
clusterable structure.

[49]: for perp in [5,10, 20, 30, 40, 50]:
for rs in [50,100]:
tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',,
<'y_projected'])
df _combo = pd.concat([df_label, df_tsnel], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', data=df_combo)

79

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s',
~%(perp, rs))

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument

t-SNE Plot with Perplexity Value 5 and Random State 50

100 A
50 4
=
g
2 07
2
J
_5{} -
—100 ~
.
T T T T T
-100 =50 0 50 100
¥ _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

80

t-SNE Plot with Perplexity Value 5 and Random State 100

100 ~
50 ~
=]
2
@ 0
e
R
_5{}]
—100 ~
T T T T T
—=100 —50 0 50 100
X _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

81

t-SNE Plot with Perplexity Value 10 and Random State 50

100 -

75

50 ~

y_projected

_25 .

_5{} .

_?5 .

—100 A

T T T T
—=100 75 —50 —25 1] 25 50 75
X _projected

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

82

t-SMNE Plot with Perplexity Value 10 and Random State 100
100

75 1

50 +

25 1

_25 .

y_projected

_5{} .

—75 4

—100 A

T T T T T T T T
—100 =75 —50 —25
X _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

83

t-SNE Plot with Perplexity Value 20 and Random State 50

y_projected

—100 -

T T T T T T
75 —50 —25
X _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

84

t-SNE Plot with Perplexity Value 20 and Random State 100

75

50

25 4

y_projected
L]

254 &
5(}

_?5 -

T T T
—75 —=50 —25 0
% _projected

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

85

t-SNE Plot with Perplexity Value 30 and Random State 50

80 4

PO
60

y_projected

_4{} -
_6{} .
_Bﬂ. -
T T T T T T T
—80 —60 —40 —-20 0] 20 40 60
% _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

86

t-SNE Plot with Perplexity Value 30 and Random State 100

60 ~

y_projected
o

_2{} -

_4{} -

_.ﬁﬂ, -

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

87

t-SNE Plot with Perplexity Value 40 and Random State 50

60
40 -
= ED -
g
Ll
=
(=)
5o
=
_2{} -
_4{} .
T T T T T T T T
—80 —60 —40 —20 0 20 40 60
% _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

88

t-SNE Plot with Perplexity Value 40 and Random State 100

y_projected

T T T T T
—60 —40

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

89

t-SNE Plot with Perplexity Value 50 and Random State 50

y_projected

T T T
—60 —40

T T T T
=20]
% _projected

No artists with labels found to put in legend.

Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

90

t-SNE Plot with Perplexity Value 50 and Random State 100

y_projected

T T T
—60 —40 =20)] 20 40

From the 7.1, we’ve already decided to use parameters of k = 13. And the random state = 100 may
let the data has more clear cluster sturcture. So we would use them to perform k-means below.

[50]: kmeans=KMeans(n_clusters=13).fit(X)
labels = kmeans.fit_predict(X)
df _kmeans_label = X.copy()
df _kmeans_label['label'] = labels
df _kmeans_label

[50]: Vote_Data_Ben_Carson_Percent_of_Votes \
0 0.382488
1 0.115207
2 0.000000
3 0.437788
4 0.105991
3587 0.000000
3588 0.000000
3589 0.216590
3590 0.000000

91

3591 0.000000

Vote_Data_Bernie_Sanders_Percent_of_Votes \

0 0.170
1 0.534
2 0.314
3 0.274
4 0.468
3587 0.511
3588 0.315
3589 0.236
3590 0.181
3591 0.589
Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0
Vote_Data_Chris_Christie_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0
Vote_Data_Donald_Trump_Percent_of_Votes \
0 0.403279
1 0.632787
2 0.486339
3 0.523497
4 0.308197

92

3587
3588
3589
3590
3591

s W N —- O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

0.904918
0.540984
0.431694
0.000000
0.750820

Vote_Data_Hillary_Clinton_Percent_of_Votes

0.

O O O O

O O O O O

Vote _Data_Jeb Bush Percent of Votes \

0.
.00
.00
.00
.00

O O O O

O O O O O

52

.00
.00
.00
.00
.00

8926
0000
0000
0000
0000

0000
0000
0000
0000
0000

Vote_Data_John_Kasich_Percent_of_Votes

0.

O O O O

O O O O O

067293
. 222222
.053208
.076682
.508607

.079812
.092332
.000000
.000000
.150235

Vote_Data_Marco_Rubio_Percent_of_Votes

93

818

.446
.537
.720
.528

.464
.637
.678
. 755
411

\

0 0.322169
1 0.202552
2 0.169059
3 0.333333
4 0.397129
3587 0.000000
3588 0.000000
3589 0.204147
3590 0.000000
3591 0.000000

Vote_Data_Martin_OMalley_Percent_of_Votes \

0] 0.0
1 0.0
2 0.0
3 0.0
4 0.0
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0
Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
3587 0.0 0.0
3588 0.0 0.0
3589 0.0 0.0
3590 0.0 0.0
3591 0.0 0.0
Vote_Data_No_Preference Percent of Votes \
0 0.000000
1 0.400000
2 0.000000
3 0.000000
4 0.066667
3587 0.000000
3588 0.000000

94

3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_Rand_Paul_Percent_of_Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Rick_Santorum_Percent_of_ Votes \

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

3587 0.0

3588 0.0

3589 0.0

3590 0.0

3591 0.0
Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \

0 0.304071 0.0

1 0.125954 0.0

2 0.486005 0.0

3 0.202290 0.0

4 0.110687 0.0

3587 0.104326 0.0

3588 0.366412 0.0

3589 0.473282 0.0

3590 0.000000 0.0

3591 0.276081 0.0
Vote_Data_Uncommitted_Percent_of_Votes label

0 0.0 5

1 0.0 10

2 0.0 11

95

3 0.0 6
4 0.0 10
3587 0.0 3
3588 0.0 11
3589 0.0 4
3590 0.0 9
3591 0.0 3

[3592 rows x 19 columns]

1.7.3 7.3. Clustering Algorithm Results Presentation

[121]: perp = 40
rs = 100

kmeans = KMeans(n_clusters=13, random_state=100) .fit(X)

df _combo["label"] = kmeans.labels_

sns.scatterplot(x='x_projected',y='y_projected',hue = "label",palette=sns.
~color_palette('husl', 13), data=df_combo)

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(perp, rs))

plt.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize = 5)
plt.show()

t-SNE Plot with Perplexity Value 40 and Random State 100

|]
Ry o ;
e g $:
60 - . ;
e et ' é
40 : A $ »
il -T%; - ' 12
5 20 - ﬂ#ﬁ %};g.'" o)
a2 ';g
% 0 avetes e
=
” "‘iﬂﬁglﬂeigi—
—20 s 4"%!‘& Baaw
=]
“w@?’i‘%’!’?ﬂ!@""h@;ﬁ
% oo et -
—40 1 L - (%
“apry
ko8
—60 - ﬁ:’!
—éﬂ —AG —éﬂ 6 Eb 4b ﬁb
¥ _projected

96

1.7.4 7.4. Assessing Clustering Separation and Cohesion

[52]: silhouette_scores = []
for k in range(2, 25):
kmeans = KMeans(n_clusters=k, random_state=0)
labels = kmeans.fit_predict(X)
score = silhouette_score(X, labels)
silhouette_scores.append(score)

plt.plot(range(2, 25), silhouette_scores)
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette score')

plt.show()

0.34 1

0.32

0.30 T

Silhouette score

0.28

0.26

T
5 10 15 20
Mumber of clusters

[63]: def show_silhouette_plots(X,cluster_labels):

This package allows us to use "color maps" in our visualtizations

97

25

import matplotlib.cm as cm

#How many clusters in your clustering?
n_clusters=len(np.unique(cluster_labels))

Create a subplot with 1 row and 2 columns
fig, axl = plt.subplots(1l, 1)
fig.set_size_inches(18, 7)

The 1st subplot %is the silhouette plot

The silhouette coeffictient fcan range from -1, 1 but in this exzample all
lie within [-0.1, 1]

axl.set_x1lim([-0.1, 1])

The (n_clusters+1)*10 is for inserting blank space between silhouette

plots of individual clusters, to demarcate them clearly.
axl.set_ylim([0, len(X) + (n_clusters + 1) * 10])

The silhouette_score gives the average wvalue for all the samples.
This gives a perspective into the density and separation of the formed
clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)

Compute the stlhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):
Aggregate the silhouette scores for samples belonging to
cluster 72, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.nipy_spectral(float(i) / n_clusters)
axl.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,

facecolor=color, edgecolor=color, alpha=0.7)

Label the silhouette plots with their cluster numbers at the middle

98

axl.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

Compute the new y_lower for mnext plot
y_lower = y_upper + 10 # 10 for the O samples

axl.set_title("The silhouette plot for the various clusters.")
axl.set_xlabel("The silhouette coefficient values")
axl.set_ylabel("Cluster label")

The vertical line for average silhouette score of all the wvalues
axl.axvline(x=silhouette_avg, color="red", linestyle="--")

axl.set_yticks([]) # Clear the yazis labels / ticks
axl.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

plt.show()

return

[64]: kmeans=KMeans(n_clusters=13, random_state=100) .fit(X)
cluster_labels = kmeans.labels_

[65]: show_silhouette_plots(X,cluster_labels)

For n_clusters = 13 The average silhouette_score is : 0.35128092983387776

The silhouette plot for the various clusters.

—

Cluster label

-0.1 0.0 0.2 0.4 0.6 0.8 10
The silhouette ceefficient values

a.) each of the clusters and

b.) the overall clustering. Are there are any objects that have poor cohesion with their assigned
cluster? Explain.

a. We can see cluster 12 and 8 are quite same, but the score is at 0.4, which indicate they have a

99

[56]:

[67]:

[57]:

[58]:

[58]:

[59]:

[59]:

[100] :

poor separation and cohesion. Cluster 9, 1, 4, 0 and 3 are similar, the score is 0.6 which have
a moderate separation and cohesion. CLuster 10 is at score 0.5, is a median in separation and
cohesion. CLuster 6 is in a second place which have relatively good separation and cohesion.
Cluster 2 have the highest score which is 0.9, well-separated and well-matched.

b. In this case, the average silhouette score of 0.351 indicates that the clusters are not fairly
well-separated and data points within each cluster are not well-matched. The score is not
particularly high, which suggests that there may be some overlap or ambiguity between the
clusters, or that the clusters are not perfectly optimized for the data.

1.7.5 7.5. Additional Analysis

from sklearn.metrics import adjusted_rand_score, homogeneity_score,
—completeness_score

ari = adjusted_rand_score(df_label["Location_State"], df_kmeans_label["label"])
ari

0.3469780328175856

homogeneity = homogeneity_score(df_label["Location_State"],,
«df_kmeans_label["label"])

homogeneity
0.5464057466437389

completeness = completeness_score(df_label["Location_State"],
-.df _kmeans label["label"])
completeness

0.8269716937056959

The adjusted RAND index score of 0.357 indicates a moderate level of agreement between the true
and predicted labels. The homogeneity score of 0.542 suggests that each cluster contains members of
multiple classes, while the completeness score of 0.811 indicates that members of each class are not
all assigned to the same cluster. These results suggest that while there is some agreement between
the true and predicted labels, the clustering may not be capturing all of the underlying patterns in
the data. It may be worth exploring other clustering methods or tweaking the parameters of the
k-means algorithm to improve the results.

for perp in [40]:
for rs in [100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',,

<'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =

~"Location_State",data=df_combo)

100

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s',
~%(perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()
ikt (I ey True Label-———---—-—-——————————— D)
#Color code the points in your t-sne plot by cluster labels and code they
"style" of the marker with your class labels.
kmeans = KMeans(n_clusters=13, random_state=100).fit (X)
df _combo["label"] = kmeans.labels_
sns.scatterplot(x='x_projected',y='y_projected',hue = "label",palette=sns.
~color_palette('husl', 13), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State Y%s' ’(perp, rs))
plt.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize = 5)
plt.show()
print(' -----—---—-—-—-—--—-—-Predicted Label------—-——————————————- ")

@ south Caroling
Meszachusetis
' Louisiana
' ‘Urginia
- Haha
60 o
' E=ntucky
Miszourl
! Ok lahama
Colorad o
40 A Hinats
' indlana
Missiszippl
' nebraska
Ohie
= 20 1 ' REnnsylvani
Q ‘Wiashingtan
“d ' wdsconsin
1) ermant
i Aorida
E 04 martn Carolina
D.| Callfarnia
Mew York
b Mchigan
Maryland
. Ennesses
=20 ! o
Connecticut
Arizana
Georgla
Arkansas
_40 _ Mew jersey
South Dakota
HAabama
' Oregon
Wiest Virginia
—60 Rhatte Isiand
Lksh
' ' ' ' ' ' ' Hew ampanie
—60 —40 =20 0 20 40 60 Hew Mexica
- heEvads
¥_projected ' fanzns
Hewall
! Celaware
e
Mmine
' Haskn
————————————————————— True Label--———-----------—----——-

101

t-SNE Plot with Perplexity Value 40 and Random State 100

L—_:':El\.ﬁllh'\-iﬂl.!hwhll-lﬂ

y_projected

T T T
—60 —40 =20 0]

There is a bit difference between true label. We can see the left-up corner have a connect with the
down one. But, the true label is not.

1.7.6 7.6. Describing Each of the Clusters

[115]: for col in df_kmeans_label.columns[:-1]:
plt.figure()
plt.title(col)

sns.boxplot ([df _kmeans_label.loc[df_kmeans_label['label'] == label, coll]
~for label in range(13)])

plt.xlabel('Cluster Label')
plt.ylabel(col)
plt.show()

102

Vbote Data_Ben_Carson_Percent_of Votes

Vote Data Ben Carson Percent of Votes

1.0 +

0.8

Cluster Label

103

Viote Data Bernie Sanders Percent_of Votes

Vote Data Bernie Sanders Percent of Votes

1.0 +

0.4

0.2

o
=)
1

I+,
B Te

y "

¢ 4 ¢

2 3 4 5 6 i 8 9 10 11
Cluster Label

104

12

Percent_of Votes

y_Fiorina

Viote Data_Carl

Vote Data Carly Fiorina Percent of Votes

1.0 +

0.8

0.6

0.4

0.2

0.0

od [—tee

2 3 4 5 6 i 8 9 10
Cluster Label

105

Viote Data_Chris_Christie_Percent_of Votes

Vote Data Chris Christie Percent of Votes

=
=]
L

0.8

0.6

0.4

0.2

o
=)
1

H [

e B B -

2 3 4 5 6 i 8 9 10
Cluster Label

106

Vote Data Donald Trump Percent of Votes

Cluster Label

107

1.0 -

[74]

=

-

‘' 0.8 . ¢ ¢

| ——

' T

%) - T =

L

n'l D.ﬁ _

= _

I_I

T 0.4

1]

g = I !

2 ¥

+—

EI 0.2 - 1 + 1

u]

g +

0.0 - ¢

T T T T T T T T T T
2 3 4 5 6 7 8 10 11 12

Vote Data Hillary Clinton Percent of Votes

1.0 +
ul
3z
g|
4= 0.8 -
o
=
w
o
L
n-| D.ﬁ .
=
2
=
E|
> 0.4

Viote_Data_Hilla
o
]
i

o
=)
1

¢
4
H
2
¢

>
-
>

T
2 3 4 5 6 i 8 9 10
Cluster Label

108

Bush_Percent_of Votes

Jeb_

Vote_Data

Vote Data Jeb Bush Percent of Votes

1.0 +

0.8

0.6

0.4

0.2

0.0

2 3 4 5 6 i 8 9 10
Cluster Label

109

Kasich_Percent _of Votes

_John

Vote_Data

Vote Data John Kasich Percent of Votes

1.0 +

0.8

0.6

0.4

4

3

5 6 i
Cluster Label

110

8 9 10 11 12

Viote Data_Marco Rubio Percent_of Votes

Vote Data Marco Rubio Percent of Votes

1.0 +

0.8

0.6

0.4

0.2

0.0

¢

L

: ¢
[oi1t gt

' - :

i . . '
1 N 1

- ¢

—m— L
1 2 3 5 6 7 8 10 11 12

Cluster Label

111

Vote Data Martin OMalley Percent of Votes

L0 #
L
% L
}I
'S 0.8 1
4_-|
=
i)
=
&
1 0.6 1
-
u
™
5
¢
E'ﬂ.4—§
5|
=4 H
18}
5 0.2 1
DI
3
S
0.0
T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12

Cluster Label

112

Viote Data Mike Huckabee Percent of Votes

Vote Data Mike Huckabee Percent of Votes

=
=]
L

0.8

0.6

0.4

0.2

o
=)
1

1 2 3 4 3 6 7 8 9 10 11

Cluster Label

113

Y

Vote Data_No_Preference Part

Vote Data No Preference Party

0.04 ~

0.02 ~

0.00 ~

—0.02 ~

—0.04 ~

3 4 5 6 i 8 9
Cluster Label

114

Viote Data_MNo_ Preference Percent of Votes

Vote Data No Preference Percent of Votes

1.0 + L
0.8
3
0.6
0.4
0.2 L
; v :
: :
0.0
T R ER:

Cluster Label

115

Viote Data Rand Paul Percent of Votes

Vote Data Rand Paul Percent of Votes

104 ¢
¢
o8 *
|)
0
0.6 -
|
|
0.4 4
|
, 0.2 -
0.0 1
T T T T T T T T T T T T
o 1 2 3 4 5 6 7 8 9 10 11 12

Cluster Label

116

Vote Data Rick Santorum Percent of Votes

=
=]
L

o
o8]
1

o
=]
1

o
4=
1

o
P
1

Viote Data Rick Santorum Percent of Votes

o
=)
1

2 3 4 5 6 i 8 9 10
Cluster Label

117

Viote Data_Ted Cruz_Percent of Votes

Vote Data Ted Cruz Percent of Votes

1.0 1
0.8 1
0.6 -
0.4 *
0.2 4

0.0

¢

i
H | .B

2 3 4 5 6 i 8 9 10
Cluster Label

118

Y

Viote Data_Uncommitted Part

Vote Data Uncommitted Party

0.04 ~

0.02 ~

0.00 ~

—0.02 ~

—0.04 ~

3 4 5 6 i 8 9
Cluster Label

119

10.
11.
12.
13.

Vote Data Uncommitted Percent of Votes

107 ¢
]
z
gl
' 0.8 -
I I
=
@
v
o 0.6
=
@
E
:
E 044 ,
wd
=
=
EI
8 02 .
=
2

0.0

0 1 2 3 4 5 6 i 8 9 10 11 12
Cluster Label

. Ben Carson has the highest value of 0.5 in cluster 0 and the lowest cluster is 10.
. Bernie Sanders is distributed in cluster 12 with a maximum value of 0.9 and the lowest cluster

is cluster 6.

. Carly Fiorina is mainly distriubate in Cluster 0, have 0.1.

Chris Christie is mainly distriubate in Cluster 0 have 0.1.

. Donald Trump, is mainly distriubate in Cluster 3—0.8. Then he has a very low approval rating

in Cluster 0.
Hillary Cliton is mainly in 11, with a value of 0.7 and lowest is in 12.

Jeb Bush has very high support in cluster 5, with a value of 0.8 Very low support in cluster
0

. John Kasich’s approval rating is only high in 1 and 12, with values of 0.5 and 0.5 respectively,

while the rest are very low.

. Marco Rubio has a relatively high approval rate of 8, with a value of 0.4, but the rest are

quite average.

Mike Huckabee and Martin O’Malley are in the 0 distribution, the others are not.

Rand Paul’s approval rating is at cluster 0.

Rick Santorum’s approval rating is at cluster 0.

Ted Cruz’s approval rating is highest at cluster 4 with a value of 0.6, lowest cluster is 12.

There is no centralized distribution for both unintentional and nonpartisan data, and very little

data.

120

[103]: | ctab=pd.crosstab(df_combo['label'],
<.df _combo['Location_State'],normalize='index')
ctab.plot.bar()
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)

plt.show()
N Hdabama
1.0 1 m— faska
N Aizana
— frkarsas
Emm Cmararnia
— Codorsdc
Connecticut
BN Celnvears
0 8 | Aorids
. BN Geomgla
N Hawall
. dah
N Hinals
N indians
o
N Ennsas
06 T Eentucky
N Loulsiana
Mine
N Maryland
. Messachusetts
B Michigan
s sissippl
0 4 . N Missourd
* B rontana
BN Mebrasks
MEVADS
BN Mew Hampshire
Mew jersey
I WEW MERIDG
E Rew York
02 T mmm Marth Caroling
N Ohic
N Oklshoma
. Or=gon
N Fennsylvania
Rhade Island
J | | I | | | | BN Sputh Caraling
0.0 ! T T T T T T T T T T T T — ?::::;3::“"
=] — [m = fa} [l=] r~ 2] =] [=] — ~ [y
— — — [R———
N Ermant
Ia be' N yrginis
BN Washington
N iest Wirginia
Wscansin
N Wiomire

We can see that cluster 7 is composed of one state. But there are some clusters are not agree with
motivation, for example, clusters 0, 1 and 11 have a lot of different states in their distribution. This
shows that also the cohesion is a little bit unsatisfactory.

1.8 8. Clustering Algorithm 2 (change name to the algorithm you chose)
1.8.1 8.1. Parameter Selection

[62]: for link in ['single', 'average', 'complete', 'ward']:
avg_ss=[]
for k in range(2,30):
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',
~linkage=1ink)
Y pred = hac.fit_predict(df_num)
avg_ss.append(silhouette_score(df_num, Y_pred))

121

plt
plt

plt.
plt.
plt.

Average Silhouette Score of Clustering

.plot(range(2,30), avg_ss)
.title('Average Silhouette Score wth HAC and %s Linkage'’link)

xlabel ('Number of Clusters')
ylabel('Average Silhouette Score of Clustering')
show ()

Average Silhouette Score wth HAC and single Linkage

0.5 4

0.4

0.3 +

0.2

5 10 15 20 25
Number of Clusters

122

Average Silhouette Score of Clustering

Average Silhouette Score wth HAC and average Linkage

0.5 4

0.4

0.3 4

0.2

5 10 15 20 25
Number of Clusters

123

Average Silhouette Score of Clustering

Average Silhouette Score wth HAC and complete Linkage

0.35 -

0.30

0.25

0.20 -

0.15

5 10 15 20 25 30
Number of Clusters

124

Average Silhouette Score wth HAC and ward Linkage

0.34

0.32

0.30 -

0.28

0.26

0.24 1

Average Silhouette Score of Clustering

0.22 1

0.20

5 10 15 20 25 30
Number of Clusters

We think the cluster number should approach the number of states. If we only choose the highest
Average Silhouette Score from above with low number of cluster, it is unreasonable. Thus, we
selected ward linkage which K = 15. THe ward linkage have the average highest score, which the
score is bigger than k = 7.

[63]: for k in range(2,30):
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',,
~linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot

sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',
~palette=sns.color_palette("husl", k), data=df_combo)

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,,
-100))

plt.legend(bbox_to_anchor=(1,1))

plt.show()

125

t-SMNE Plot with Perplexity Value 40 and Random State 100

y_projected

T T T T
—20 0
»_projected

126

t-SMNE Plot with Perplexity Value 40 and Random State 100

y_projected

T T T T
—20 0 20 40 60
»_projected

127

y_projected

t-SMNE Plot with Perplexity Value 40 and Random State 100

60 1

40 -
20 1

u -
_20 -
_40 -
_60 -

T T T T T T T
—60 —40 —20 0 20 40 60
»_projected

128

y_projected

t-SMNE Plot with Perplexity Value 40 and Random State 100

60 1

40 -
20 1

u -
_20 -
_40 -
_60 -

T T T T T T T
—60 —40 —20 0 20 40 60
»_projected

129

y_projected

t-SMNE Plot with Perplexity Value 40 and Random State 100

60 1

40 -
20 1

n -
_20 -
_40 -
_60 -

T T T T T T T
—60 —40 —20 0 20 40 60
»_projected

130

60 1

y_projected

I

S o o 8
i i i i

|
I
=]
i

_aﬂ -

t-SMNE Plot with Perplexity Value 40 and Random State 100

L BN BN B BN BN BN
S o W N = O

T T T
—60 —40 —20 0 20 40 60
»_projected

131

t-SNE Plot with Perplexity Value 40 and Random State 100

60 -

40 -

¥_projected
(=]

_2() -
_40 <
_6() -
—-60 —40 —20 0 20 40 60
¥ _projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40

[
o
1

y_projected
(=]

_2() -
_40 -
_6() -
T T T T T T T
—60 —40 =20 0 20 40 60
¥_projected

132

=~ U s W N = O

0~ @ U W= O

60

40

M
o
I

W _projected
o

|
]
o
i

—40 A

_60 -

t-SNE Plot with Perplexity Value 40 and Random State 100

T T T
—60 —40 —20 0 20 40 60
x_projected

133

Ww o = 3 m WM O

y_projected

y_projected

60

Y
=]
]

PJ
o
1

o
1

|
mJ
=
1

|
I
o
1

_60 .

t-SNE Plot with Perplexity Value 40 and Random State 100

T T
—60 —40 -20 0 20 40 60
X_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

T T
—60 —40 -20 0 20 40 60
x_projected

134

Do~ O U s W N e o

=
o

W0~ O U s W N O

[
— o

t-SNE Plot with Perplexity Value 40 and Random State 100

60 A

y_projected
|
FJ P
= o [=] g
1 1 1 1

|
I
o
1

_60 -

T T T
—60 -40 -20 0 20 40 60
¥_projected

135

W0~ oW s W O

[
MNOE O

y_projected

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

Y
=]
]

PJ
o
1

o
1

|
mJ
=
1

|
I
o
1

_60 .

®
®
®
®
®
®
o
®
®
®
®
®
®
®
—'EI.‘-O —IIH) —ﬁ() L:J 2|0 4|0 EIO
X_projected
t-SNE Plot with Perplexity Value 40 and Random State 100
®
®
®
®
®
®
o
®
®
®
®
o
®
®
®

T T T
—60 —40 -20 0 20 40 60
x_projected

136

Do~ O U s W N e o

I
W NP o

W0~ O U s W N O

e
B W NP O

t-SNE Plot with Perplexity Value 40 and Random State 100

60 A

y_projected
|
FJ P
= o [=] g
1 1 1 1

|
I
o
1

_60 -

T T T
—60 -40 -20 0 20 40 60
¥_projected

137

W0~ oW s W O

e
(IS I N PR

y_projected

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

T T T T T
—60 —40 -20 0 20 40
X_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

Y
=]
]

PJ
o
1

o
1

|
mJ
=
1

|
I
o
1

_60 .

T T T
—60 —40 -20 0 20 40
x_projected

138

Do~ O U s W N e o

N
O W kWP O

W0~ O U s W N O

R
T N TR Y N R

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60 A

i
L]
]

PJ
=]
1

o
1

|
hJ
=
1

|
I
o
1

_60 -

T T T
—60 -40 -20 0 20 40 60
¥_projected

139

W0~ oW s W O

e P
0~ R WN PO

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

PJ
o
1

o
]

|
J
=]
1

|
I
o
1

_60 -

T T
—60 —40 -20 0 20 40 60
X_projected

140

Do~ O U s W N e o

R e
LW~ oW s WN O

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

PJ
o
1

o
]

|
J
=]
1

|
I
o
1

_60 -

T T T T T T
—60 —40 -20 0 20 40 60
X_projected

141

D0~ DU s W N e o

S i
C Do~ WnEWNRE O

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

PJ
o
1

o
]

|
J
=]
I

|
I
o
1

_60 -

T T
—60 —40 -20 0 20 40 60
X_projected

142

D0~ DU s W N e o

S R I o [=y SF R
H O Wom=-oWh WMo

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

P
o
1

o
]

|
J
=]
I

|
I
o
1

_60 -

T T
—60 —40 -20 0 20 40 60
X_projected

143

D W~ O U oW N O

S T N = [S [y S R
N H O WD ~-o Wk WNE O

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

P
o
1

o
]

|
J
o
1

|
I
o
1

_60 -

T T
—60 —40 -20 0 20 40 60
X_projected

144

D W~ O U oW N O

S I o I = [=y Sy
Wk 42O WDOoO=Wh WwhPEo

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

P
o
1

o
1

|
J
=]
I

|
I
o
1

_60 -

T T
—60 —40 -20 0 20 40 60
X_projected

145

D W~ DU oW N o

T B B J S Qi Ry Ry g
B WNPE O OB=-10WsEWNEO

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

P
o
1

o
1

|
J
=]
I

|
I
o
1

_60 -

T T
—60 —40 -20 0 20 40 60
X_projected

146

D W~ DU oW N o

S N o [yt [
U W2 O Wo=o W s Wk o

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40

P
o
1

o
]

|
J
=]
1

|
I
o
1

—60 7

—60 —40 -20 0 20 40 60
X_projected

147

D W~ O U oW N O

Iy S
O U E WP O WD -oW s WNE O

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40

P
o
1

o
]

|
J
=]
1

|
I
o
1

—60 7

—60 —40 -20 0 20 40 60
X_projected

148

D W~ DU oW N o

S T S N e T = J S s i
N O WU E WN PO OD-0WeE NP O

[79]:

[80]:

[80]:

t-SNE Plot with Perplexity Value 40 and Random State 100

y_projected

—60 —40 -20 0 20 40 60
*_projected

1.8.2 8.2. Clustering Algorithm

#Clustering from dendrogram with 6 clusters

hac = AgglomerativeClustering(n_clusters=15, affinity='euclidean',,
~linkage='ward')

df _combo['predicted_cluster'] = hac.fit_predict(df_num)

df _combo
Location_State Vote_Data_Ben_Carson_Percent_of_Votes \

0 South Carolina 0.382488
1 Massachusetts 0.115207

149

D W~ U oW N O

S T T O G i
D~ O U W O WDm=-oWl s WwNE o

w

3587
3588
3589
3590
3591

B W NN - O

3587
3588
3589
3590
3591

> W NN ~- O

3587
3588
3589
3590
3591

s W N ~- O

3587
3588
3589
3590

Louisiana
Virginia
Massachusetts

California
Arizona
Texas

Texas

South Dakota

Vote_Data_Bernie_Sanders_Percent_of_Votes
170
.534
.314
.274
.468

0.

O O O O

O O O O O

.511
.315
.236
.181
.589

Vote_Data_Carly_Fiorina_Percent_of_Votes
0.

O O O O

O O O O O
O O O O O

O O O O O

Vote_Data_Chris_Christie_Percent_of_Votes
0.

150

O O O O

o O O O
o O O O

0

o O O O

\

o O

o oo oo,

.000000
.437788
.105991

.000000
.000000
.216590
.000000
.000000

3591

S W N —- O

3587
3588
3589
3590
3591

S W NN - O

3587
3588
3589
3590
3591

S W NN - O

3587
3588
3589
3590
3591

s W NN - O

0.

Vote_Data_Donald_Trump_Percent_of_Votes

0.403279
.632787
.486339
.523497
.308197

O O O O

.904918
.540984
.431694
.000000
. 750820

O O O O O

0

\

Vote_Data_Hillary_Clinton_Percent_of_Votes

0.

O O O O

O O O O O

Vote_Data_Jeb_Bush_Percent_of_Votes \

0.
.000000
.000000
.000000
.000000

o O O O

O O O O O

528926

.000000
.000000
.000000
.000000
.000000

Vote_Data_John_Kasich_Percent_of_Votes

0.067293
0.222222
0.053208
0.076682
0.508607

151

818

.446
.537
.720
.528

.464
.637
.678
.755
411

\

3587
3588
3589
3590
3591

s W N - O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

S W N - O

3587
3588
3589
3590
3591

0.
0.
0.
0.
0.

079812
092332
000000
000000
150235

Vote_Data_Marco_Rubio_Percent_of_ Votes

0.
.20256562
.169059
.333333
.397129

O O O O

O O O O O

322169

.000000
.000000
.204147
.000000
.000000

Vote_Data_No_Preference_Party Vote_Data_No_Preference_Percent_of_Votes

0.

Vote_Data_Rand_Paul_Percent

O O O O

O O O O O

0

0

0

0

0

0

0

0

0

0

_of Votes \
0.0
0.0
0.0
0.0
0.0

O O O O O
O O O O o

Vote_Data_Rick_Santorum_Percent_of_Votes \

152

0.
.400000
.000000
.000000
.066667

O O O O

© o0 oo o,

000000

.000000
.000000
.000000
.000000
.000000

\

s W NN -, O

3587
3588
3589
3590
3591

s W NN - O

3587
3588
3589
3590
3591

s W NN - O

3587
3588
3589
3590
3591

s W N - O

3587
3588

Vote_Data_Ted_Cruz_Percent_of_ Votes

0.
.125954
.486005
.202290
.110687

o O O O

O O O O O

304071

.104326
.366412
.473282
.000000
.276081

O O O O O
O O O O O

O O O O O
O O O O O

Vote_Data_Uncommitted_Party \

Vote_Data_Uncommitted_Percent_of_Votes

predicted_cluster
7

1

0

12

1

0.

O O O O O
O O O O O

153

o O O O
O O O O

0

X_projected

15.
-48.
-7.
17.
-32.
40.
0.
13.

-53.
42,

333004
632351
403143
125759
474995

149212
413865
933252
272396
094490

0.

o O O O
o O O O

O O O O O
O O O O O

0

y_projected
792213
450615
584099
247463
306452

65.
38.
-43.
43.
27.

. 740902
.407272
. 729895
.035904
.580858

\

[81]:

3589 8
3590 10
3591 4

[3592 rows x 22 columns]

1.8.3 8.3. Clustering Algorithm Results Presentation

We randomly selected 100 values. The purpose is that because the dataset is too large, the hier-
archical diagram in jupyter notebook running HAC is too intricate and complex. So we randomly
selected 100 does not affect the algorithm itself, just for the aesthetics of the data visualization.

df _random = df_label.sample(100).reset_index(drop=True)
df _random_num = df_random.drop(['Location_State'], axis = 1)
df _random_num

dm = pdist(df_random_num, metric='euclidean')
S = linkage(dm, method='ward')

fig, ax = plt.subplots(figsize=(30, 30))

d = dendrogram(S, orientation='right', labels=df_random['Location_State'].
-array, ax=ax)

ax.set_xlabel('Dissimilarity', fontsize=30)

ax.set_ylabel('States', fontsize=30)

ax.set_yticklabels(ax.get_yticklabels(), fontsize=20)

plt.show()

154

achusetts
achusetts
achusetts
achusetts
achusetts

achu:
ssachusetts

a
ssachusetts
achusetts

achusetts
achusetts
achusetts
achusetts

DDV IDIII VDD
o
c
G
o
o
G

Connecticut
New Mexico
Montana

P New |ersey
ennsylvania
Ne){)raska
Nebraska

Qregon
South Da%ta
South Dakota

Washington
Washin:

gton

nd
aryland
I;gnnsyi ania
nnsy[vania
Pennsylvania [— |.I
Mz;v/ry\ nd

10—

States
&

0
o
Wosgian ——

IHinms

Wisconsin
lllinois
Utah

Colol

rado

Missouri

North Caroling
Missouri

North Ca(olma
1llinois
Missouri
Missouri
consin

Wis j:';?
North Carolina
Kentucky
Kentuck
MkSSIStSIp i
entuc| —
Kentuc% 7

Illinois

Missouri

Texas

Louisiana

T] e—
Texas

Arkansas
Texas

o o5 o

Dissimillsarity

[82]: for k in [15]:
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',,
~linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot

sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',
~palette=sns.color_palette("husl", k), data=df_combo)

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,,
-100))

plt.legend(bbox_to_anchor=(1,1))

plt.show()

155

t-SNE Plot with Perplexity Value 40 and Random State 100

e 0

60 - e 1

o 2

e 3

40 '!l e 4

® 5

- 20 e 6

g o 7

% 0 ° 8

Q, e 9
= e 10
—20 1 o 11
o 12
—40 4 & o 13
o 14

_60 -
T T T T T T T
—60 —40 =20 0 20 40 60
*_projected

1.8.4 8.4. Assessing Clustering Separation and Cohesion

[68]: def show_silhouette_plots(X,cluster_labels):

This package allows us to use "color maps" in our wvisualizations
import matplotlib.cm as cm

#How many clusters in your clustering?
n_clusters=len(np.unique(cluster_labels))

Create a subplot with 1 row and 2 columns
fig, axl = plt.subplots(l, 1)
fig.set_size_inches(18, 7)

The 1st subplot is the stlhouette plot

The silhouette coefficient fcan range from -1, 1 but in this exzample all
lie within [-0.1, 1]

axl.set_x1im([-0.1, 1])

The (n_clusters+1)*10 is for inserting blank space between silhouette

plots of individual clusters, to demarcate them clearly.
axl.set_ylim([0, len(X) + (n_clusters + 1) * 10])

156

The silhouette_score gtves the average value for all the samples.
This gives a perspective into the density and separation of the formed
clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print ("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)

Compute the stlhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):
Aggregate the stlhouette scores for samples belonging to
cluster 72, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == 1i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.nipy_spectral(float(i) / n_clusters)
ax1l.fill_betweenx(up.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)

Label the silhouette plots with their cluster numbers at the middle
axl.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the O samples

axl.set_title("The silhouette plot for the various clusters.")
axl.set_xlabel("The silhouette coefficient values")

axl.set_ylabel("Cluster label")

The vertical line for average stilhouette score of all the values
axl.axvline(x=silhouette_avg, color="red", linestyle="--")

axl.set_yticks([]) # Clear the yazis labels / ticks
axl.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 11)

plt.show()

157

return

[104]: | #Clustering from dendrogram with 15 clusters
hac = AgglomerativeClustering(n_clusters=15, affinity='euclidean',,
~linkage='ward')
df _compare = df_num.copy()
df_compare = hac.fit_predict(df_num)

show_silhouette_plots(X,df_compare)

For n_clusters = 15 The average silhouette_score is : 0.3350670274512757

The silhouette plot for the various clusters.

Cluster label

-0.1 X 0.2 0.4 0.6 0.8 10
The silhouette coefficient values

a.) each of the clusters and b.) the overall clustering. Are there are any objects that have poor
cohesion with their assigned cluster? Explain.

a. We can see cluster 5 and 9 the score is at 0.4, which indicate they have a poor separation and
cohesion. Cluster 1 and 6 have the score at 0.5, which said they got a moderate separation and
cohesion. Cluster 7, 4 and 2 are similar, the score is 0.6 which have a moderate separation and
cohesion. CLuster 11 and 8 at score (.65, is a median in separation and cohesion. CLuster 3
is in a second place which have score at 0.7, relatively good separation and cohesion. Cluster
13 and 14 have the highest score which is 0.9, well-separated and well-matched.

b. In the case, the average silhouette score of 0.269 for n_ clusters = 6 suggests that the clustering
results are not very compact and well-separated. It is generally recommended to aim for a
silhouette score closer to 1, indicating better clustering results. However, the choice of the
number of clusters depends on the context and the specific problem you are trying to solve.

158

[70]:

[71]:

[71]:

[72]:

[72]:

[73]:

[73]:

[105]:

1.8.5 8.5. Additional Analysis

from sklearn.metrics import adjusted_rand_score, homogeneity_score,
~completeness_score

ari = adjusted_rand_score(df_label["Location_State"], df_compare)
ari

0.45900746908678663

homogeneity = homogeneity_score(df_label["Location_State"], df_compare)
homogeneity

0.6642166230977945

completeness = completeness_score(df_label["Location_State"], df_compare)
completeness

0.7704005551052056

The adjusted Rand index (ARI) is a measure of the similarity between two clusterings. It ranges
from -1 (no agreement) to 1 (perfect agreement). In this case, the ARI value of 0.459 indicates a
moderate agreement between the true labels and the predicted labels.

The homogeneity score measures how well each cluster contains only samples that are members of
a single class. It ranges from 0 (low homogeneity) to 1 (high homogeneity). The score of 0.664
indicates a moderate level of homogeneity.

The completeness score measures how well all members of a given class are assigned to the same
cluster. It ranges from 0 (low completeness) to 1 (high completeness). The score of 0.770 indicates
a high level of completeness.

In summary, the ARI and homogeneity scores suggest that the clustering results have moderate
agreement with the true labels and moderate homogeneity, while the completeness score suggests
that the clustering results have high completeness.

for k in [15]:
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',,
~linkage='ward')
df _combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot
sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',
~palette=sns.color_palette("husl", k), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,,
-100))
plt.legend(bbox_to_anchor=(1,1))
plt.show()
P 1 (e Predicted Label--——----————-——————————~ ")

159

for perp in [40]:
for rs in [100]:
tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',y,
<'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =,
~"Location_State",data=df_ combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s'(,
<% (perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()
Xt] (I True Label-----—————————————————— ")

R BN - ST I S FUR S Rt

y_projected

L BN B BN BN BN BN BN BN BN BN BN BN BN BN
e e =
W N = o

[
)

T T T
—60 —40 —20 0 20 40 60
*_projected

160

t-SNE Plot with Perplexity Value 40 and Random State 100

S @

@ sowth Caroling
Meszachusetis
Loutsiana
‘rginia

dnha

owa

Ee=ntucky
Miszourl

Ok lahama

60

40 . Colorado
Hinals
indians
Mssissiopl
Mebraska
Ohi
FEnnsylvania
‘Wiashingtan
wdsconsin
weErmant
Aorids
Bartn Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas
Mew jersey

20 A

y_projected
=

_20 -

_40 -
South Dakota
HAabama
Oregon
Wiest Virginia
RAhade Island

Lksh
T T T T Montana

T T
—60 —40 —20 0 20 40 60 Newbemica
¥_projected

—60 7

We can see there are somewhat different between the true label. For example, you can see the left
up corner, there are three cluster being seperated.

1.8.6 8.6. Describing Each of the Clusters

[108]: | #Clustering from dendrogram with k clusters

hac = AgglomerativeClustering(n_clusters=15, affinity='euclidean',
~linkage='ward')

df_combo['predicted_cluster'] = hac.fit_predict(df_num)

[109]: for col in df_label.columns[1:18]:

sns.boxplot (x="predicted_cluster", y=col, data=df_combo)
plt.show()

161

1.0 4

T T
e ™ S
o o o

T
<
(=]
S210A 10 Ju23lad Uosied uag eied =10n

I 0.8

predicted cluster
162

T
o o
— (=

T
<
(=]
SII0A 10 Juallad siapues alulag eled =100

I 0.6

predicted cluster
163

% IM
| m
—
|
—
|~
—
Lo
—
-> -> - ._|.|_ -
- oo
-
=
s
L =t
- ey
|
e
Lo
T T T T T
= o« o = ™ o~
— (= (= (= (= (=

S2]0A 10 Juadlad euuold Aped eied =10n

predicted cluster

164

T
<
—

T T
@ e ™
o o o

S2J0A JO JU3dIad 20ISUYD SUYD eleq 3IoA

T
=
=]

S
o

predicted cluster

165

1.0 4

S210A, JO juadlad dwnil pleuoq eied =100

predicted cluster

166

=
=]
L

L —
z
g|
' 0.8 - * .
I ——

2 T4 :
3 +
: |y L
® o6 - 1
: H
= —
== -
=)) o
il T -‘- 1 4 L]
© 0.2 -
=) i | ¢
g i L
=

00 ¢ .

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

predicted cluster

167

1.0 4

T T
©@ e
=] =]

T

<

(=]
S2]0A 10 Juadlad ysng q=[eie

I 0.2 4

a =1on

0.0

predicted cluster

168

Kasich_Percent _of Votes

Viote Data_John

1.0 4

0.8 -
0.6 -
¢
¢
0.4 - —)
:
' P 1a
)
0.0 - - é +é— J—
0 1 3 4 5 6 7 8 9 10 11 12 13 14

predicted cluster

169

1.0 4

0.8 1

53107 1O

T T T
e = ™
=] =] =]

Tluaodad olgny oddely eled =100

D.I’J—J—

predicted cluster

170

-> - i#.‘_l-

T
<
—

T T
@ e ™
o o o

S210A 10 Juadlad AQ||BIWO UlLel Bled =10n

T
=
=]

S
o

predicted cluster

171

T
<
—

T T T
©@ = ™
=] =] =]

T
w
(=]
S310A 10 JU3213d 23qeINH I B1Ed 2107

S
o

predicted cluster

172

Y

Vote Data_No_Preference Part

0.04

0.02 ~

0.00

—0.02 ~

—0.04 ~

6 7 8
predicted_cluster

173

9

T T T
10 11 12

T T
13 14

soee—{ T

T
<
—

T T T T
©@ = ™ =
=] =] =] =]

T
w
(=]
S210A 10 Ju2dlad 2ouadajald oN eled =10n

predicted cluster

174

-3
L
i
|
—
|~
—
Lo
—
- oo
F =
Fwo
F
=t
F
|
o~
o

T T T T T

=] o o = ™ <

— (= (= (= (= (=

S210/, JO Ju3dUad |ned puey eied =10n

predicted cluster

175

T
<
—

T T T
©@ = ™
=] =] =]

T
w
(=]
S210A 10 Ju22lad Wniolues o1y eied =10n

S
o

predicted cluster

176

Hi 5,

— [— o

=

] [

-4 1* Ka.

I | oo L~

*I 1 —~

_ Lo

—

1] -
i.i_l-l_tl -~
iT-|Ti, - - o
I I L

i._|.|_ -t

i:_vll-lT - M

._l-l_ -

.l.!#l-|_ - |-

- - — | — =]
T T T T T T
oS ©@ o o ™ o
— o o o o o

S3I0A 10 Juaddad Zrud pal eled =100

predicted cluster

177

[90]:

Ll

© XN >

0.04 4
=
5
o
_5| 0.02 1
a
£
:
o 0.00
L]
=
=
E|
[15]
DI —0.02 -
z
-
—0.04 -

T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
predicted_cluster

. The vote for Bernie Sanders are mainly distributed in cluster 3 and 13 which apportch to 0.9.

But cluster 11 and 12 have the lowest which is 0.1.

. For Carly Fiorina, it is mainly distriubated in Cluster 14, have 0.35.

For Chris Christie iy is mainly in cluster 14 have 0.75

For Donald Trump, mainly distributed in cluster 0, 9 and 17 which apportch to 0.8. But
cluster 2 are very low.

HillaryCliton mostly distributed in cluster 11, 12 and 15. But less distributed in 3 and 13.
Jeb Bush had a lot of support on cluster 14 and 15, but cluster 1 very low support.

John’s approval rating is only high among 18, and the others are very low.

Marco Rubio has a very high rating in cluster 10 but the rest are vert low.

Mike Huckabee and Martin OMalley are only distributed in cluster 9 and none of the others.

Unaffiliated and nonpartisan data are not centrally distributed and data are scarce.

ctab=pd.crosstab(df_combo['predicted_cluster'],
~df_combo['Location_State'] ,normalize='index')

ctab.plot.bar()

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)

plt.show()

178

[114]:

N Hdabama
1.0 1 m— faska
B Arizana
— ArkAreas
Emm Cmararnia
. Codorsdo
Connecticut
BN Celnvears
0 8 | Aorids
. BN Geomgla
N Hawall
. dah
N Hinals
N indiana
o
N Ennsas
06 T Eentucky
N Loulsiana
Mine
N Maryland
. Messachusetts
B Michigan
- Mssissippl
0 4 . N Missourd
- BN ontana
BN Mebrasks
MEVADS
B Mew Hampshire
Mew jersey
I WEW MERIDG
E Rew York
mm marth Caroling
N Ohic
N Oklshoma
. Oregon
N Fennsylvania
Rhade Island
BN Sputh Caraling
South Dakota
EEE Ennesses
-t
— Lksh
predicted_cluster =t
— Wrginia
BN Washington
N iest Wirginia
‘Wizconsin
N éyomirdg

0.2 1

0.0

. I‘ ‘I 1l
T T T T T T T T T
(= — (o'} s = M w = =4} (=3} E

11

12 4
13
14

We can see from the bar plot that clusters 7, 8, 11, 12 and 14 are composed of one state. But in
clusters 2 4 and 5, there are multiple states. So the bar plot of HAC also shows that the cohesion is
a little bit unsatisfactory. The cluster structure goes to K=15, plus our additional analysis said the
ARI and homogeneity scores suggest that the clustering results have moderate agreement with the
true labels and moderate homogeneity, while the completeness score suggests that the clustering
results have high completeness which fit with the bar plot.

1.9 9. Analysis Summary and Conclusion
1.9.1 9.1. Algorithm Comparison Summary
9.1.1. Comparing Algorithm Performance recall the bar plot in 7.6 and 8.6 first.

kmeans = KMeans(n_clusters=13, random_state=100).fit (X)
df _combo["label"] = kmeans.labels_
ctab=pd.crosstab(df_combo['label'],
«df _combo['Location_State'],normalize='index"')
ctab.plot.bar()
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()
Pz -1 (I Bar for Kmeans----—-----—-----——————— D)

179

ctab=pd.crosstab(df_combo['predicted_cluster'],
df_combo['Location_State'],normalize='index')

ctab.plot.bar()

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)

plt.show()

Pzt (I e e BardRoHACEEE e e e e S ")

N AaDama
1.0 — Aaska
N Arizana
BN Arknrsas
EEN Califarnia
. Codorsdo
BN Connectiout
EEE Delnware
0 8 . Aorids
N B Georgia
. Hwall
N daba
N Ninals
N indiana
. owa
N Ennsas
06 N BN EEntucky
BN Loulsiana
ming
I Maryland
— MascAChusetts
e rMchigan
— Mool
04 - . Mszour
BN Montana
N MEbrasks
E Mevada
N New Hampshire
MEw jersay
N New Mexioo
. REW YOk
0.2 n BN Marth Caroling
N Chic
N Oklnhoma
BN Oregon
N Fennsylvania
BN Areade Island
= Spwth Carolina
South Dakota

0.0 L |J| H |I l : i

. Ennessee
N Exas
L kah

N Ermant
Ia be' E urginia
I ‘washington
et Virginils
B dsconsin
I Wdyoming

0
1
2
3
4
5
6
7
8
9
10
11 4
12 4

180

N Hdabama
1.0 1 Haska
B Arizana
— ArkAreas
Emm Cmararnia
. Codorsdo
Connecticut
BN Celnvears
D 8 | Aorids
. BN Geomgla
N Hawall
daha
N Hinals
N indiana
o
N Ennsas
06 T Eentucky
N Loulsiana
Mine
N Maryland
. Messachusetts
Michigan
- Mssissippl
D 4 . N Missourd
- BN ontana
BN Mebrasks
MEVADS
B Mew Hampshire
Mew jersey
I WEW MERIDG
E Rew York
Marth Carolina
N Ohic
N Oklshoma
. Oregon
N Fennsylvania
Rhade Island
BN Sputh Caraling
South Dakota
EEE Ennesses
-t
Ltah
predicted_cluster =t
— Wrginia
BN Washington
N iest Wirginia
‘Wizconsin
N éyomirdg

0.2 1

0.0

. I‘ ‘I 1l
T T T T T T T T T
(= — (o'} s = M w = =4} (=3} E

11
12 4
13
14

Given your research goals and motivation stated at the beginning of your analysis,
compare and contrast the performance of your two clustering algorithms. recall the
Motivation: We want to use the voting data to determine if different counties are clustered according
to the state they are in. We also want to explore the distribution of candidates supported in each
cluster. The specific method is: we take the information of the real state where the county is
located as the pre-defined label, and then check whether the predicted clusters are related to our
pre-defined Location_ State by different clustering algorithms. Then we analyze each cluster in
detail to explore the components with high candidate support.

Looking first at the k-means, we can see that cluster 7 is composed of one state. But we can see that
some clusters are not conceived with motivation, for example, clusters 5 and 11 have different states
in their distribution. This shows that also the separation and cohesion is a little bit unsatisfactory,
especially the cohesion.

Next is the HAC, where we can see that clusters 7, 8, 11, 12 and 14 are composed of one state. But
in clusters 2 and 5, there are multiple states. So the bar plot of HAC also shows that the cohesion
is a little bit unsatisfactory.

9.1.2. Comparing Algorithm Results

181

[111]: for perp in [40]:
for rs in [100]:
tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',
<'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =
«"Location_State",data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s',
~%(perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()
pEamE(’ 0 0 oossossosssosososoees True Label---——-———————————————— ")

for k in [15]:
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',
~linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot
sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',
~palette=sns.color_palette("husl", k), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,,
-100))
plt.legend(bbox_to_anchor=(1,1))
plt.show()
Pzt (I Predicted Label,,

#Color code the points in your t-sne plot by cluster labels and code the,
<"style" of the marker with your class labels.

kmeans = KMeans(n_clusters=13, random_state=100) .fit (X)

df _combo["label"] = kmeans.labels_

sns.scatterplot(x='x_projected',y='y_projected',hue = "label",palette=sns.
~color_palette('husl', 13), data=df_combo)

plt.title('t-SNE Plot with Perplexity Value ’%s and Random State %s' %(perp, rs))

plt.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize = 5)

plt.show()

prdnE(? 0000 cooooosseosseosoosees Predicted Label,
oK-means-—-—--—-—-—————————————- ")

182

y_projected

t-SNE Plot with Perplexity Value 40 and Random State 100

60

o
=)
1

MJ
=]
1

=]
]

|
FJ
o
1

|
B
=
1

—60 7

T T
—60 —40 =20 0 20 40 60

x_projected

183

@ sowth Caroling
Messachusetts

! Hinals.
indians
Mississiopl
Mebraska
Ohi
Fennsylvanis
‘Wiashingtan
wdsconsin
weErmant
Aorids
Marth Carolina
Califarnia
Mew York
Mchigan
Maryland
Ennesses
Exas
Connecticut
Arizana
Georgla
Arkansas

Mew jersey
South Dakota
HAabama
Oregon
‘Wiest Virginia

Momtans

Mew Mekioo

t-SNE Plot with Perplexity Value 40 and Random State 100

60

40 1

y_projected
h'J N
=] o [=]

|
I
o
1
| BN BN B BN B BN BN B BN BN BN BN BN BN

_60 -

T T
—60 —40 -20 0 20 40 60

184

D W~ O U oW N O

e R
B W NP O

t-SNE Plot with Perplexity Value 40 and Random State 100

#
60 1

L—_:':E\.Cllh"-uﬂluhwh!l—lﬂ

- 20
o
b 2005
S oA "35 ol
o

_20 -

—40 - N

_6{} -

T T T T T T T
—b0 —40 =20 0 20 40 60
X_projected

Average silhouette_ score is 0.35 from k-means, 0.33 from hac ward linkage. These values are quiet
similar, however, the K-means are better.

And we compare the t-SNE plot, from the t-SNE plot, HAC and K-means are similar too with
k=13 and k=15. Also their distribution is also similar by the t-SNE plot. In addition, those two
plot have strong relation with the location_ state. Both of this two algos have proved that our goal

in the motivation which is the vote preference in each county may be similar according to their
state.

All in all, these two algorithms are pretty similar. However, the K-means has higher average
silhouette score. A higher average silhouette score indicates better clustering performance, where
each data point is more similar to other data points in the same cluster than to data points in other
clusters. Also, K-means have more balanced clusters. But the HAC shows more clusters, which are

more close to the real number of states. The difference between them are not huge, they are both
good algo in this situation as far as I am concerned.

1.9.2 9.2. Conclusion and Insights Summary

In conclusion, we have used clustering algorithms to explore the distribution of vote preference in
each county and determine if they are clustered according to the state they in. The K-means and
HAC clustering algorithms were used, and their performance was compared based on the average

185

silhouette score and t-SNE plot. The results showed that both algorithms have strong relations
with the location_ state and are good in this situation. However, K-means had a higher average
silhouette score, indicating better clustering performance, and more balanced clusters with a greater
distribution shape. On the other hand, HAC showed more clusters, which were more close to the
real number of states. In general, the results suggest that the vote preference in each county may
be similar according to their state, but with some variations that need to be explored further.

1.10 10. Group Contribution Report
Project Name: Election Analysis

Team Members:
[Shuoyuan Gaol

[Shiyuan Zhang]

Contributions:
[Shuoyuan Gao] - [Partl, Part2, Part3, Part4, Part8, Part9] - 60%

[Shiyuan Zhang] - [Partb5, Part6, Part7, part10] - 40%

This notebook was converted with convert.ploomber.io

186

	Election Analysis
	1. Introduction and Dataset Research
	2. Data Cleaning and Data Manipulation
	number有的太大 所以有extreme value which will cause inaccurate 分析

	3. Basic Descriptive Analytics
	3.1 For numerical attributes, calculate basic summary statistics about each attribute.
	3.2 For any categorical attributes, count up the number of observations of each type.
	3.3 Determine if there exist are any strong pairwise relationships between the variables in your dataset

	4. Dataset Scaling Decisions
	5. Clusterability and Clustering Structure Questions
	6. Algorithm Selection Motivation
	7. Clustering K-means
	7.1. Parameter Selection
	7.2. Clustering Algorithm
	7.3. Clustering Algorithm Results Presentation
	7.4. Assessing Clustering Separation and Cohesion
	7.5. Additional Analysis
	7.6. Describing Each of the Clusters

	8. Clustering Algorithm 2 (change name to the algorithm you chose)
	8.1. Parameter Selection
	8.2. Clustering Algorithm
	8.3. Clustering Algorithm Results Presentation
	8.4. Assessing Clustering Separation and Cohesion
	8.5. Additional Analysis
	8.6. Describing Each of the Clusters

	9. Analysis Summary and Conclusion
	9.1. Algorithm Comparison Summary
	9.2. Conclusion and Insights Summary

	10. Group Contribution Report

