
Notebook

November 20, 2024

1 Election Analysis
Names: Shiyuan Zhang, Shuoyuan Gao

1.1 1. Introduction and Dataset Research
1. Discovering hidden patterns: For example, in the 2016 U.S. election dataset may contain

multidimensional data such as voter’s voting behavior, socio-economic characteristics, and
geographic information. Unsupervised learning, clustering as we using in below, can help
identify underlying patterns between different groups of voters, such as voters with similar
voting behavior or voters with similar socioeconomic characteristics. Then as we found the
patterns, we can understand better for the voter trends. This can tell us more deeper analysis
and predictions of election outcomes and voter preferences.”

2. Discovering outliers: In the 2016 U.S. election dataset, there may be some unusual voting
patterns like precincts with unusually high or low turnout. We can identified the outliers
using algorithms. This can letting people know more about the precinct characteristics. In
Gaussian Mixture Models, “the GMM from sklearn calculates the score of an observation
based on the density of each point’s location in that space. Thus, points in higher density
regions are less likely to be outliers, and vice versa.”

3. Data exploration and visualization: unsupervised learning can also be used as a data explo-
ration and visualization tool to help researchers better understand the structure and distri-
bution of data in the 2016 U.S. election dataset. For example, cluster analysis allows for the
division of voters into different clusters and the generation of visualization charts to show the
relationships between these clusters. This helps researchers better understand voter behavior
and attitudes, identify potential voting patterns or trends, and extract interesting insights
from the dataset.

Motivation: We want to use the voting data to determine if different counties are clustered according
to the state they are in. We also want to explore the distribution of candidates supported in each
cluster. The specific method is: we take the information of the real state where the county is
located as the pre-defined label, and then check whether the predicted clusters are related to our
pre-defined Location_State by different clustering algorithms. Then we analyze each cluster in
detail to explore the components with high candidate support.

Citation:

1.Delua, Julianna. “Supervised vs. Unsupervised Learning: What’s the Difference?” IBM, 12
Mar. 2021, https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning.

1

2.Santos, Gustavo. “Using Unsupervised Learning to Find Outliers.” Medium, Towards Data
Science, 2 Nov. 2022, https://towardsdatascience.com/using-unsupervised-learning-to-find-outliers-
670e07396599.

3.Verbeeck, Nico et al. “Unsupervised machine learning for exploratory data analysis in imaging
mass spectrometry.” Mass spectrometry reviews vol. 39,3 (2020): 245-291. doi:10.1002/mas.21602

The dataset is from Professor provided. Background is from 2016 USA president election, it contains
the Democrat candidates and Republicans candidates counts.

voting information include all of the U.S. counties in the 2016 U.S. presidential election. For each
county, the percentage and number of votes that went to each primary presidential candidate is
listed.

[1]: pip install sklearn

Requirement already satisfied: sklearn in
/Users/gj/miniconda3/lib/python3.10/site-packages (0.0.post4)

[notice] A new release of pip is
available: 23.0.1 -> 23.1.2
[notice] To update, run:
pip install --upgrade pip
Note: you may need to restart the kernel to use updated packages.

1.2 2. Data Cleaning and Data Manipulation

[3]: import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

from sklearn.preprocessing import MinMaxScaler
from sklearn.manifold import TSNE
from sklearn.metrics import adjusted_rand_score
from sklearn.datasets import load_digits
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score
from sklearn.datasets import make_blobs
from sklearn.mixture import GaussianMixture
from sklearn.cluster import KMeans

from matplotlib.patches import Ellipse

from sklearn.metrics import silhouette_samples, silhouette_score

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.manifold import TSNE

2

from sklearn.cluster import AgglomerativeClustering
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import linkage, dendrogram, cophenet
from sklearn.preprocessing import StandardScaler

from scipy.spatial.distance import pdist, squareform
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from pyclustertend import hopkins
from sklearn.metrics import silhouette_score, calinski_harabasz_score
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)

[126]: #read data
df = pd.read_csv('election.csv')
df = df.drop('Location_State_Abbreviation',axis =1)
df

[126]: Location_County Location_State Vote_Data_Ben_Carson_Number_of_Votes \
0 Abbeville South Carolina 305
1 Abbot Maine 0
2 Abington Massachusetts 53
3 Acadia Louisiana 0
4 Accomack Virginia 411
… … … …
4211 Yuma Arizona 0
4212 Yuma Colorado 0
4213 Zapata Texas 4
4214 Zavala Texas 0
4215 Ziebach South Dakota 0

Vote_Data_Ben_Carson_Party Vote_Data_Ben_Carson_Percent_of_Votes \
0 Republican 8.3
1 Republican 0.0
2 Republican 2.5
3 Republican 0.0
4 Republican 9.5
… … …
4211 Republican 0.0
4212 Republican 0.0
4213 Republican 4.7
4214 Republican 0.0
4215 Republican 0.0

Vote_Data_Bernie_Sanders_Number_of_Votes Vote_Data_Bernie_Sanders_Party \
0 312 Democrat
1 1 Democrat

3

2 1352 Democrat
3 1087 Democrat
4 682 Democrat
… … …
4211 2156 Democrat
4212 33 Democrat
4213 685 Democrat
4214 373 Democrat
4215 132 Democrat

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 17.0
1 100.0
2 53.4
3 31.4
4 27.4
… …
4211 31.5
4212 39.3
4213 23.6
4214 18.1
4215 58.9

Vote_Data_Carly_Fiorina_Number_of_Votes Vote_Data_Carly_Fiorina_Party \
0 0 Republican
1 0 Republican
2 0 Republican
3 0 Republican
4 0 Republican
… … …
4211 0 Republican
4212 0 Republican
4213 0 Republican
4214 0 Republican
4215 0 Republican

… Vote_Data_Rand_Paul_Percent_of_Votes \
0 … 0.0
1 … 0.0
2 … 0.0
3 … 0.0
4 … 0.0
… … …
4211 … 0.0
4212 … 0.0
4213 … 0.0
4214 … 0.0

4

4215 … 0.0

Vote_Data_Rick_Santorum_Number_of_Votes Vote_Data_Rick_Santorum_Party \
0 0 Republican
1 0 Republican
2 0 Republican
3 0 Republican
4 0 Republican
… … …
4211 0 Republican
4212 0 Republican
4213 0 Republican
4214 0 Republican
4215 0 Republican

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
4211 0.0
4212 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Ted_Cruz_Number_of_Votes Vote_Data_Ted_Cruz_Party \
0 876 Republican
1 0 Republican
2 208 Republican
3 1454 Republican
4 685 Republican
… … …
4211 2556 Republican
4212 0 Republican
4213 32 Republican
4214 0 Republican
4215 25 Republican

Vote_Data_Ted_Cruz_Percent_of_Votes \
0 23.9
1 0.0
2 9.9
3 38.2
4 15.9

5

… …
4211 28.8
4212 0.0
4213 37.2
4214 0.0
4215 21.7

Vote_Data_Uncommitted_Number_of_Votes Vote_Data_Uncommitted_Party \
0 0 NaN
1 0 NaN
2 0 NaN
3 0 NaN
4 0 NaN
… … …
4211 0 NaN
4212 0 NaN
4213 0 NaN
4214 0 NaN
4215 0 NaN

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
4211 0.0
4212 0.0
4213 0.0
4214 0.0
4215 0.0

[4216 rows x 50 columns]

[6]: df = df.fillna(0)

[7]: #check totol vote number
sum_column = df.filter(regex='Number',axis =1).sum(axis=1) -␣

↪df['Vote_Data_No_Preference_Number_of_Votes']
df['sum_column'] = sum_column
df['sum_column'].sort_values(ascending=False)

[7]: 2214 1268622
677 760894
831 678313
1630 537303

6

2318 464471
…

3113 0
146 0
3852 0
1492 0
4170 0
Name: sum_column, Length: 4216, dtype: int64

1.2.1 number���� ���extreme value which will cause inaccurate ��

[8]: #calculate the average amont of vote of each states
df['sum_column'].mean()

[8]: 13460.871679316888

[9]: #filter the low vote number state
df_filtered = df[df['sum_column'] > 100]
df = df_filtered.drop('sum_column', axis=1)
df

[9]: Location_County Location_State Location_State_Abbreviation \
0 Abbeville South Carolina SC
2 Abington Massachusetts MA
3 Acadia Louisiana LA
4 Accomack Virginia VA
5 Acton Massachusetts MA
… … … …
4210 Yuba California CA
4211 Yuma Arizona AZ
4213 Zapata Texas TX
4214 Zavala Texas TX
4215 Ziebach South Dakota SD

Vote_Data_Ben_Carson_Number_of_Votes Vote_Data_Ben_Carson_Party \
0 305 Republican
2 53 Republican
3 0 Republican
4 411 Republican
5 54 Republican
… … …
4210 0 Republican
4211 0 Republican
4213 4 Republican
4214 0 Republican
4215 0 Republican

7

Vote_Data_Ben_Carson_Percent_of_Votes \
0 8.3
2 2.5
3 0.0
4 9.5
5 2.3
… …
4210 0.0
4211 0.0
4213 4.7
4214 0.0
4215 0.0

Vote_Data_Bernie_Sanders_Number_of_Votes Vote_Data_Bernie_Sanders_Party \
0 312 Democrat
2 1352 Democrat
3 1087 Democrat
4 682 Democrat
5 2557 Democrat
… … …
4210 1730 Democrat
4211 2156 Democrat
4213 685 Democrat
4214 373 Democrat
4215 132 Democrat

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 17.0
2 53.4
3 31.4
4 27.4
5 46.8
… …
4210 51.1
4211 31.5
4213 23.6
4214 18.1
4215 58.9

Vote_Data_Carly_Fiorina_Number_of_Votes … \
0 0 …
2 0 …
3 0 …
4 0 …
5 0 …
… … …
4210 0 …

8

4211 0 …
4213 0 …
4214 0 …
4215 0 …

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Rick_Santorum_Number_of_Votes Vote_Data_Rick_Santorum_Party \
0 0 Republican
2 0 Republican
3 0 Republican
4 0 Republican
5 0 Republican
… … …
4210 0 Republican
4211 0 Republican
4213 0 Republican
4214 0 Republican
4215 0 Republican

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Ted_Cruz_Number_of_Votes Vote_Data_Ted_Cruz_Party \
0 876 Republican
2 208 Republican

9

3 1454 Republican
4 685 Republican
5 203 Republican
… … …
4210 318 Republican
4211 2556 Republican
4213 32 Republican
4214 0 Republican
4215 25 Republican

Vote_Data_Ted_Cruz_Percent_of_Votes \
0 23.9
2 9.9
3 38.2
4 15.9
5 8.7
… …
4210 8.2
4211 28.8
4213 37.2
4214 0.0
4215 21.7

Vote_Data_Uncommitted_Number_of_Votes Vote_Data_Uncommitted_Party \
0 0 0.0
2 0 0.0
3 0 0.0
4 0 0.0
5 0 0.0
… … …
4210 0 0.0
4211 0 0.0
4213 0 0.0
4214 0 0.0
4215 0 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0

10

4215 0.0

[3592 rows x 51 columns]

[10]: #delete the col including the number, we would like to use the percentage for␣
↪cluster

df = df.drop(df.filter(regex='Number', axis=1).columns, axis=1)
df

[10]: Location_County Location_State Location_State_Abbreviation \
0 Abbeville South Carolina SC
2 Abington Massachusetts MA
3 Acadia Louisiana LA
4 Accomack Virginia VA
5 Acton Massachusetts MA
… … … …
4210 Yuba California CA
4211 Yuma Arizona AZ
4213 Zapata Texas TX
4214 Zavala Texas TX
4215 Ziebach South Dakota SD

Vote_Data_Ben_Carson_Party Vote_Data_Ben_Carson_Percent_of_Votes \
0 Republican 8.3
2 Republican 2.5
3 Republican 0.0
4 Republican 9.5
5 Republican 2.3
… … …
4210 Republican 0.0
4211 Republican 0.0
4213 Republican 4.7
4214 Republican 0.0
4215 Republican 0.0

Vote_Data_Bernie_Sanders_Party \
0 Democrat
2 Democrat
3 Democrat
4 Democrat
5 Democrat
… …
4210 Democrat
4211 Democrat
4213 Democrat
4214 Democrat
4215 Democrat

11

Vote_Data_Bernie_Sanders_Percent_of_Votes Vote_Data_Carly_Fiorina_Party \
0 17.0 Republican
2 53.4 Republican
3 31.4 Republican
4 27.4 Republican
5 46.8 Republican
… … …
4210 51.1 Republican
4211 31.5 Republican
4213 23.6 Republican
4214 18.1 Republican
4215 58.9 Republican

Vote_Data_Carly_Fiorina_Percent_of_Votes Vote_Data_Chris_Christie_Party \
0 0.0 Republican
2 0.0 Republican
3 0.0 Republican
4 0.0 Republican
5 0.0 Republican
… … …
4210 0.0 Republican
4211 0.0 Republican
4213 0.0 Republican
4214 0.0 Republican
4215 0.0 Republican

… Vote_Data_No_Preference_Party \
0 … 0.0
2 … 0.0
3 … 0.0
4 … 0.0
5 … 0.0
… … …
4210 … 0.0
4211 … 0.0
4213 … 0.0
4214 … 0.0
4215 … 0.0

Vote_Data_No_Preference_Percent_of_Votes Vote_Data_Rand_Paul_Party \
0 0.0 Republican
2 1.2 Republican
3 0.0 Republican
4 0.0 Republican
5 0.2 Republican
… … …

12

4210 0.0 Republican
4211 0.0 Republican
4213 0.0 Republican
4214 0.0 Republican
4215 0.0 Republican

Vote_Data_Rand_Paul_Percent_of_Votes Vote_Data_Rick_Santorum_Party \
0 0.0 Republican
2 0.0 Republican
3 0.0 Republican
4 0.0 Republican
5 0.0 Republican
… … …
4210 0.0 Republican
4211 0.0 Republican
4213 0.0 Republican
4214 0.0 Republican
4215 0.0 Republican

Vote_Data_Rick_Santorum_Percent_of_Votes Vote_Data_Ted_Cruz_Party \
0 0.0 Republican
2 0.0 Republican
3 0.0 Republican
4 0.0 Republican
5 0.0 Republican
… … …
4210 0.0 Republican
4211 0.0 Republican
4213 0.0 Republican
4214 0.0 Republican
4215 0.0 Republican

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 23.9 0.0
2 9.9 0.0
3 38.2 0.0
4 15.9 0.0
5 8.7 0.0
… … …
4210 8.2 0.0
4211 28.8 0.0
4213 37.2 0.0
4214 0.0 0.0
4215 21.7 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0

13

2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

[3592 rows x 35 columns]

[11]: df_num = df.select_dtypes(include='number')
df_num

[11]: Vote_Data_Ben_Carson_Percent_of_Votes \
0 8.3
2 2.5
3 0.0
4 9.5
5 2.3
… …
4210 0.0
4211 0.0
4213 4.7
4214 0.0
4215 0.0

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 17.0
2 53.4
3 31.4
4 27.4
5 46.8
… …
4210 51.1
4211 31.5
4213 23.6
4214 18.1
4215 58.9

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 0.0
2 0.0
3 0.0
4 0.0

14

5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Chris_Christie_Percent_of_Votes \
0 0.0
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Donald_Trump_Percent_of_Votes \
0 36.9
2 57.9
3 44.5
4 47.9
5 28.2
… …
4210 82.8
4211 49.5
4213 39.5
4214 0.0
4215 68.7

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 81.8
2 44.6
3 53.7
4 72.0
5 52.8
… …
4210 46.4
4211 63.7
4213 67.8
4214 75.5
4215 41.1

15

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 6.4
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_John_Kasich_Percent_of_Votes \
0 4.3
2 14.2
3 3.4
4 4.9
5 32.5
… …
4210 5.1
4211 5.9
4213 0.0
4214 0.0
4215 9.6

Vote_Data_Marco_Rubio_Percent_of_Votes \
0 20.2
2 12.7
3 10.6
4 20.9
5 24.9
… …
4210 0.0
4211 0.0
4213 12.8
4214 0.0
4215 0.0

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 0.0
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0

16

4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
… … …
4210 0.0 0.0
4211 0.0 0.0
4213 0.0 0.0
4214 0.0 0.0
4215 0.0 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 0.0
2 1.2
3 0.0
4 0.0
5 0.2
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0
2 0.0

17

3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 23.9 0.0
2 9.9 0.0
3 38.2 0.0
4 15.9 0.0
5 8.7 0.0
… … …
4210 8.2 0.0
4211 28.8 0.0
4213 37.2 0.0
4214 0.0 0.0
4215 21.7 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
2 0.0
3 0.0
4 0.0
5 0.0
… …
4210 0.0
4211 0.0
4213 0.0
4214 0.0
4215 0.0

[3592 rows x 18 columns]

1. We first read the dataset.
2. Drop the NA value.
3. Then check totol vote number.
4. We calculate the average amont of vote of each states to drop the filter the low vote number

state.
5. We filter the total vote number below the 100, which filter the extreme values out of the

dataset.
6. Finally, Delete the col including the number, we would like to use the percentage for cluster.

Now, we have the percentage columns that only have the total vote number greater than 100,

18

“df_num”.

1.3 3. Basic Descriptive Analytics
1.3.1 3.1 For numerical attributes, calculate basic summary statistics about each

attribute.

[12]: df_basic = df_num.describe()
df_basic

[12]: Vote_Data_Ben_Carson_Percent_of_Votes \
count 3592.000000
mean 2.699807
std 3.589121
min 0.000000
25% 0.000000
50% 0.000000
75% 5.400000
max 21.700000

Vote_Data_Bernie_Sanders_Percent_of_Votes \
count 3592.000000
mean 47.883404
std 18.395268
min 0.000000
25% 36.875000
50% 48.600000
75% 56.800000
max 100.000000

Vote_Data_Carly_Fiorina_Percent_of_Votes \
count 3592.000000
mean 0.067054
std 0.481854
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 11.700000

Vote_Data_Chris_Christie_Percent_of_Votes \
count 3592.000000
mean 0.053931
std 0.436933
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000

19

max 8.719532

Vote_Data_Donald_Trump_Percent_of_Votes \
count 3592.000000
mean 46.237583
std 15.930844
min 0.000000
25% 35.000000
50% 45.400000
75% 55.700000
max 91.500000

Vote_Data_Hillary_Clinton_Percent_of_Votes \
count 3592.000000
mean 49.293099
std 18.057093
min 0.000000
25% 40.000000
50% 48.650000
75% 59.800000
max 100.000000

Vote_Data_Jeb_Bush_Percent_of_Votes \
count 3592.000000
mean 0.192129
std 1.137126
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 12.100000

Vote_Data_John_Kasich_Percent_of_Votes \
count 3592.000000
mean 12.111225
std 10.649826
min 0.000000
25% 3.900000
50% 8.450000
75% 17.500000
max 63.900000

Vote_Data_Marco_Rubio_Percent_of_Votes \
count 3592.000000
mean 10.275768
std 9.123062
min 0.000000

20

25% 0.000000
50% 10.000000
75% 17.200000
max 62.700000

Vote_Data_Martin_OMalley_Percent_of_Votes \
count 3592.000000
mean 0.022884
std 0.366343
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 13.200000

Vote_Data_Mike_Huckabee_Percent_of_Votes \
count 3592.000000
mean 0.066676
std 0.479296
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 9.600000

Vote_Data_No_Preference_Party \
count 3592.0
mean 0.0
std 0.0
min 0.0
25% 0.0
50% 0.0
75% 0.0
max 0.0

Vote_Data_No_Preference_Percent_of_Votes \
count 3592.000000
mean 0.063363
std 0.243077
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 3.000000

Vote_Data_Rand_Paul_Percent_of_Votes \
count 3592.000000

21

mean 0.093875
std 0.621383
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 9.600000

Vote_Data_Rick_Santorum_Percent_of_Votes \
count 3592.000000
mean 0.027450
std 0.232522
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 7.300000

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
count 3592.000000 3592.0
mean 24.025030 0.0
std 13.759378 0.0
min 0.000000 0.0
25% 12.000000 0.0
50% 21.700000 0.0
75% 34.700000 0.0
max 78.600000 0.0

Vote_Data_Uncommitted_Percent_of_Votes
count 3592.000000
mean 0.001253
std 0.036195
min 0.000000
25% 0.000000
50% 0.000000
75% 0.000000
max 1.300000

[13]: sns.scatterplot(data=df_num)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()

22

1.3.2 3.2 For any categorical attributes, count up the number of observations of each
type.

[14]: df['Location_State'].value_counts().sort_values(ascending=False)

[14]: Massachusetts 346
Texas 253
Vermont 229
Connecticut 169
Georgia 159
Virginia 133
Kentucky 120
Missouri 115
Illinois 103
North Carolina 100
Iowa 99
Tennessee 95
Nebraska 93
Indiana 92
Ohio 88
Michigan 83
Mississippi 82
Oklahoma 77
Arkansas 74
Wisconsin 72
Alabama 67
Florida 67
Pennsylvania 67
South Dakota 66
Louisiana 64

23

New York 62
California 58
Montana 56
West Virginia 55
South Carolina 46
Idaho 44
Colorado 43
Rhode Island 41
Washington 39
Alaska 38
Oregon 36
New Mexico 33
Utah 29
Maryland 24
New Jersey 21
Nevada 16
Arizona 15
New Hampshire 10
Kansas 4
Hawaii 4
Delaware 3
Wyoming 1
Maine 1
Name: Location_State, dtype: int64

[15]: df['Location_County'].value_counts().sort_values(ascending=False)

[15]: Washington 28
Jefferson 25
Franklin 24
Lincoln 22
Jackson 21

..
Seward 1
Seymour 1
Shackelford 1
Shaftsbury 1
Ziebach 1
Name: Location_County, Length: 2215, dtype: int64

[16]: df['Vote_Data_Ben_Carson_Party'].value_counts().sort_values(ascending=False)

[16]: Republican 3592
Name: Vote_Data_Ben_Carson_Party, dtype: int64

[17]: df['Vote_Data_Bernie_Sanders_Party'].value_counts().sort_values(ascending=False)

24

[17]: Democrat 3592
Name: Vote_Data_Bernie_Sanders_Party, dtype: int64

[18]: df['Vote_Data_Rick_Santorum_Party'].value_counts().sort_values(ascending=False)

[18]: Republican 3592
Name: Vote_Data_Rick_Santorum_Party, dtype: int64

[19]: df['Vote_Data_Ted_Cruz_Party'].value_counts().sort_values(ascending=False)

[19]: Republican 3592
Name: Vote_Data_Ted_Cruz_Party, dtype: int64

1.3.3 3.3 Determine if there exist are any strong pairwise relationships between the
variables in your dataset

[20]: sns.heatmap(df_num.corr())
plt.show()

25

[21]: sns.pairplot(data = df)
plt.show()

From the above grahp, we can see there are no strong relationship between
most variable. However, the ‘Vote_Data_Bernie_Sanders_Percent_of_Votes’ and
‘Vote_Data_Hillary_Clinton_Percent_of_Votes’ have strong negative relation, which means if
the extend of people want to vote for Bernie Sanders, the extend of Hillary Clinton will decrease.

1.4 4. Dataset Scaling Decisions
Scaling data using the Min-Max Scaler means scaling the data to a fixed range of values, usually
[0,1] or [-1,1]. The difference between the two scaling methods using Standard Scaler and Min-Max

26

Scaler is that the scaling range of the data is different: Standard Scaler scales the data to a normal
distribution with a mean of 0 and a standard deviation of 1, while Min-Max Scaler scales the data
to a specified minimum and maximum value range.

The distribution range of the data is different: If the distribution range of the data is large, using
Standard Scaler may scale the data to a smaller range, resulting in the loss of some characteristic
information of the data. While using Min-Max Scaler can scale the data to a specified range and
keep more information about the data features.

Outliers in the data: If there are outliers in the data, using Standard Scaler may cause the scaling
range of the data to be affected by the outliers, thus affecting the performance of the model. Using
the Min-Max Scaler avoids this problem by scaling the outliers to a specified range.

Model requirements: Different models have different requirements for data scaling. For example,
some models (e.g., SVM) are more sensitive to data scaling, while others (e.g., decision trees) are
less sensitive to data scaling. Therefore, the needs of the model used need to be considered when
choosing a data scaling method.

In general, the choice of which scaling method to use should be based on the specific data set and
model. If the distribution of the data is relatively large or there are outliers, it is recommended
to use the Min-Max Scaler; if the distribution of the data is closer to normal or the model is not
sensitive to data scaling, the Standard Scaler can be used.

[22]: scale = StandardScaler()
df_scale1 = scale.fit_transform(df_num)
df_scale1

[22]: array([[1.56054152, -1.67911137, -0.13917705, …, -0.00908819,
0. , -0.03461736],

[-0.05567791, 0.29993386, -0.13917705, …, -1.02671774,
0. , -0.03461736],

[-0.75232422, -0.89619238, -0.13917705, …, 1.0303477 ,
0. , -0.03461736],

…,
[0.55737084, -1.3202735 , -0.13917705, …, 0.95765988,
0. , -0.03461736],

[-0.75232422, -1.61930506, -0.13917705, …, -1.74632721,
0. , -0.03461736],

[-0.75232422, 0.59896542, -0.13917705, …, -0.16900141,
0. , -0.03461736]])

[23]: Z = pd.DataFrame(df_scale1, columns=df_num.columns)
Z

[23]: Vote_Data_Ben_Carson_Percent_of_Votes \
0 1.560542
1 -0.055678
2 -0.752324
3 1.894932
4 -0.111410

27

… …
3587 -0.752324
3588 -0.752324
3589 0.557371
3590 -0.752324
3591 -0.752324

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 -1.679111
1 0.299934
2 -0.896192
3 -1.113670
4 -0.058904
… …
3587 0.174884
3588 -0.890755
3589 -1.320274
3590 -1.619305
3591 0.598965

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 -0.139177
1 -0.139177
2 -0.139177
3 -0.139177
4 -0.139177
… …
3587 -0.139177
3588 -0.139177
3589 -0.139177
3590 -0.139177
3591 -0.139177

Vote_Data_Chris_Christie_Percent_of_Votes \
0 -0.123449
1 -0.123449
2 -0.123449
3 -0.123449
4 -0.123449
… …
3587 -0.123449
3588 -0.123449
3589 -0.123449
3590 -0.123449
3591 -0.123449

Vote_Data_Donald_Trump_Percent_of_Votes \

28

0 -0.586214
1 0.732167
2 -0.109086
3 0.104367
4 -1.132400
… …
3587 2.295390
3588 0.204815
3589 -0.422986
3590 -2.902798
3591 1.410192

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 1.800480
1 -0.259940
2 0.244088
3 1.257681
4 0.194239
… …
3587 -0.160242
3588 0.797964
3589 1.025053
3590 1.451538
3591 -0.453796

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 5.460023
1 -0.168983
2 -0.168983
3 -0.168983
4 -0.168983
… …
3587 -0.168983
3588 -0.168983
3589 -0.168983
3590 -0.168983
3591 -0.168983

Vote_Data_John_Kasich_Percent_of_Votes \
0 -0.733563
1 0.196160
2 -0.818083
3 -0.677216
4 1.914737
… …
3587 -0.658433
3588 -0.583304

29

3589 -1.137381
3590 -1.137381
3591 -0.235833

Vote_Data_Marco_Rubio_Percent_of_Votes \
0 1.087969
1 0.265763
2 0.035545
3 1.164709
4 1.603219
… …
3587 -1.126508
3588 -1.126508
3589 0.276725
3590 -1.126508
3591 -1.126508

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 -0.062475
1 -0.062475
2 -0.062475
3 -0.062475
4 -0.062475
… …
3587 -0.062475
3588 -0.062475
3589 -0.062475
3590 -0.062475
3591 -0.062475

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 -0.139132 0.0
1 -0.139132 0.0
2 -0.139132 0.0
3 -0.139132 0.0
4 -0.139132 0.0
… … …
3587 -0.139132 0.0
3588 -0.139132 0.0
3589 -0.139132 0.0
3590 -0.139132 0.0
3591 -0.139132 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 -0.260707
1 4.676696
2 -0.260707

30

3 -0.260707
4 0.562193
… …
3587 -0.260707
3588 -0.260707
3589 -0.260707
3590 -0.260707
3591 -0.260707

Vote_Data_Rand_Paul_Percent_of_Votes \
0 -0.151096
1 -0.151096
2 -0.151096
3 -0.151096
4 -0.151096
… …
3587 -0.151096
3588 -0.151096
3589 -0.151096
3590 -0.151096
3591 -0.151096

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 -0.118069
1 -0.118069
2 -0.118069
3 -0.118069
4 -0.118069
… …
3587 -0.118069
3588 -0.118069
3589 -0.118069
3590 -0.118069
3591 -0.118069

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 -0.009088 0.0
1 -1.026718 0.0
2 1.030348 0.0
3 -0.590591 0.0
4 -1.113943 0.0
… … …
3587 -1.150287 0.0
3588 0.347082 0.0
3589 0.957660 0.0
3590 -1.746327 0.0
3591 -0.169001 0.0

31

Vote_Data_Uncommitted_Percent_of_Votes
0 -0.034617
1 -0.034617
2 -0.034617
3 -0.034617
4 -0.034617
… …
3587 -0.034617
3588 -0.034617
3589 -0.034617
3590 -0.034617
3591 -0.034617

[3592 rows x 18 columns]

[24]: df['Location_State']

[24]: 0 South Carolina
2 Massachusetts
3 Louisiana
4 Virginia
5 Massachusetts

…
4210 California
4211 Arizona
4213 Texas
4214 Texas
4215 South Dakota
Name: Location_State, Length: 3592, dtype: object

[25]: df.reset_index(inplace=True)
C = df['Location_State']
frames = [C,Z]
df_label_standard = pd.concat(frames,axis = 1)
df_label_standard

[25]: Location_State Vote_Data_Ben_Carson_Percent_of_Votes \
0 South Carolina 1.560542
1 Massachusetts -0.055678
2 Louisiana -0.752324
3 Virginia 1.894932
4 Massachusetts -0.111410
… … …
3587 California -0.752324
3588 Arizona -0.752324
3589 Texas 0.557371

32

3590 Texas -0.752324
3591 South Dakota -0.752324

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 -1.679111
1 0.299934
2 -0.896192
3 -1.113670
4 -0.058904
… …
3587 0.174884
3588 -0.890755
3589 -1.320274
3590 -1.619305
3591 0.598965

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 -0.139177
1 -0.139177
2 -0.139177
3 -0.139177
4 -0.139177
… …
3587 -0.139177
3588 -0.139177
3589 -0.139177
3590 -0.139177
3591 -0.139177

Vote_Data_Chris_Christie_Percent_of_Votes \
0 -0.123449
1 -0.123449
2 -0.123449
3 -0.123449
4 -0.123449
… …
3587 -0.123449
3588 -0.123449
3589 -0.123449
3590 -0.123449
3591 -0.123449

Vote_Data_Donald_Trump_Percent_of_Votes \
0 -0.586214
1 0.732167
2 -0.109086
3 0.104367

33

4 -1.132400
… …
3587 2.295390
3588 0.204815
3589 -0.422986
3590 -2.902798
3591 1.410192

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 1.800480
1 -0.259940
2 0.244088
3 1.257681
4 0.194239
… …
3587 -0.160242
3588 0.797964
3589 1.025053
3590 1.451538
3591 -0.453796

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 5.460023
1 -0.168983
2 -0.168983
3 -0.168983
4 -0.168983
… …
3587 -0.168983
3588 -0.168983
3589 -0.168983
3590 -0.168983
3591 -0.168983

Vote_Data_John_Kasich_Percent_of_Votes \
0 -0.733563
1 0.196160
2 -0.818083
3 -0.677216
4 1.914737
… …
3587 -0.658433
3588 -0.583304
3589 -1.137381
3590 -1.137381
3591 -0.235833

34

Vote_Data_Marco_Rubio_Percent_of_Votes \
0 1.087969
1 0.265763
2 0.035545
3 1.164709
4 1.603219
… …
3587 -1.126508
3588 -1.126508
3589 0.276725
3590 -1.126508
3591 -1.126508

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 -0.062475
1 -0.062475
2 -0.062475
3 -0.062475
4 -0.062475
… …
3587 -0.062475
3588 -0.062475
3589 -0.062475
3590 -0.062475
3591 -0.062475

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 -0.139132 0.0
1 -0.139132 0.0
2 -0.139132 0.0
3 -0.139132 0.0
4 -0.139132 0.0
… … …
3587 -0.139132 0.0
3588 -0.139132 0.0
3589 -0.139132 0.0
3590 -0.139132 0.0
3591 -0.139132 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 -0.260707
1 4.676696
2 -0.260707
3 -0.260707
4 0.562193
… …
3587 -0.260707

35

3588 -0.260707
3589 -0.260707
3590 -0.260707
3591 -0.260707

Vote_Data_Rand_Paul_Percent_of_Votes \
0 -0.151096
1 -0.151096
2 -0.151096
3 -0.151096
4 -0.151096
… …
3587 -0.151096
3588 -0.151096
3589 -0.151096
3590 -0.151096
3591 -0.151096

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 -0.118069
1 -0.118069
2 -0.118069
3 -0.118069
4 -0.118069
… …
3587 -0.118069
3588 -0.118069
3589 -0.118069
3590 -0.118069
3591 -0.118069

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 -0.009088 0.0
1 -1.026718 0.0
2 1.030348 0.0
3 -0.590591 0.0
4 -1.113943 0.0
… … …
3587 -1.150287 0.0
3588 0.347082 0.0
3589 0.957660 0.0
3590 -1.746327 0.0
3591 -0.169001 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 -0.034617
1 -0.034617

36

2 -0.034617
3 -0.034617
4 -0.034617
… …
3587 -0.034617
3588 -0.034617
3589 -0.034617
3590 -0.034617
3591 -0.034617

[3592 rows x 19 columns]

[26]: scaler = MinMaxScaler()
df_scale = pd.DataFrame(scaler.fit_transform(df_num),columns=df_num.columns,);
df_num =df_scale.copy()
df_scale

[26]: Vote_Data_Ben_Carson_Percent_of_Votes \
0 0.382488
1 0.115207
2 0.000000
3 0.437788
4 0.105991
… …
3587 0.000000
3588 0.000000
3589 0.216590
3590 0.000000
3591 0.000000

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 0.170
1 0.534
2 0.314
3 0.274
4 0.468
… …
3587 0.511
3588 0.315
3589 0.236
3590 0.181
3591 0.589

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 0.0
1 0.0
2 0.0

37

3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Chris_Christie_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Donald_Trump_Percent_of_Votes \
0 0.403279
1 0.632787
2 0.486339
3 0.523497
4 0.308197
… …
3587 0.904918
3588 0.540984
3589 0.431694
3590 0.000000
3591 0.750820

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 0.818
1 0.446
2 0.537
3 0.720
4 0.528
… …
3587 0.464
3588 0.637
3589 0.678
3590 0.755
3591 0.411

38

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 0.528926
1 0.000000
2 0.000000
3 0.000000
4 0.000000
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_John_Kasich_Percent_of_Votes \
0 0.067293
1 0.222222
2 0.053208
3 0.076682
4 0.508607
… …
3587 0.079812
3588 0.092332
3589 0.000000
3590 0.000000
3591 0.150235

Vote_Data_Marco_Rubio_Percent_of_Votes \
0 0.322169
1 0.202552
2 0.169059
3 0.333333
4 0.397129
… …
3587 0.000000
3588 0.000000
3589 0.204147
3590 0.000000
3591 0.000000

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …

39

3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
… … …
3587 0.0 0.0
3588 0.0 0.0
3589 0.0 0.0
3590 0.0 0.0
3591 0.0 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 0.000000
1 0.400000
2 0.000000
3 0.000000
4 0.066667
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0

40

1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 0.304071 0.0
1 0.125954 0.0
2 0.486005 0.0
3 0.202290 0.0
4 0.110687 0.0
… … …
3587 0.104326 0.0
3588 0.366412 0.0
3589 0.473282 0.0
3590 0.000000 0.0
3591 0.276081 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

[3592 rows x 18 columns]

[27]: X = pd.DataFrame(df_scale, columns=df_num.columns)
X

[27]: Vote_Data_Ben_Carson_Percent_of_Votes \
0 0.382488
1 0.115207
2 0.000000
3 0.437788

41

4 0.105991
… …
3587 0.000000
3588 0.000000
3589 0.216590
3590 0.000000
3591 0.000000

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 0.170
1 0.534
2 0.314
3 0.274
4 0.468
… …
3587 0.511
3588 0.315
3589 0.236
3590 0.181
3591 0.589

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Chris_Christie_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

42

Vote_Data_Donald_Trump_Percent_of_Votes \
0 0.403279
1 0.632787
2 0.486339
3 0.523497
4 0.308197
… …
3587 0.904918
3588 0.540984
3589 0.431694
3590 0.000000
3591 0.750820

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 0.818
1 0.446
2 0.537
3 0.720
4 0.528
… …
3587 0.464
3588 0.637
3589 0.678
3590 0.755
3591 0.411

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 0.528926
1 0.000000
2 0.000000
3 0.000000
4 0.000000
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_John_Kasich_Percent_of_Votes \
0 0.067293
1 0.222222
2 0.053208
3 0.076682
4 0.508607
… …
3587 0.079812

43

3588 0.092332
3589 0.000000
3590 0.000000
3591 0.150235

Vote_Data_Marco_Rubio_Percent_of_Votes \
0 0.322169
1 0.202552
2 0.169059
3 0.333333
4 0.397129
… …
3587 0.000000
3588 0.000000
3589 0.204147
3590 0.000000
3591 0.000000

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
… … …
3587 0.0 0.0
3588 0.0 0.0
3589 0.0 0.0
3590 0.0 0.0
3591 0.0 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 0.000000
1 0.400000

44

2 0.000000
3 0.000000
4 0.066667
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 0.304071 0.0
1 0.125954 0.0
2 0.486005 0.0
3 0.202290 0.0
4 0.110687 0.0
… … …
3587 0.104326 0.0
3588 0.366412 0.0
3589 0.473282 0.0
3590 0.000000 0.0

45

3591 0.276081 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

[3592 rows x 18 columns]

[28]: C = df['Location_State']
frames = [C,X]
df_label = pd.concat(frames,axis = 1)
df_label

[28]: Location_State Vote_Data_Ben_Carson_Percent_of_Votes \
0 South Carolina 0.382488
1 Massachusetts 0.115207
2 Louisiana 0.000000
3 Virginia 0.437788
4 Massachusetts 0.105991
… … …
3587 California 0.000000
3588 Arizona 0.000000
3589 Texas 0.216590
3590 Texas 0.000000
3591 South Dakota 0.000000

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 0.170
1 0.534
2 0.314
3 0.274
4 0.468
… …
3587 0.511
3588 0.315
3589 0.236
3590 0.181
3591 0.589

46

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Chris_Christie_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Donald_Trump_Percent_of_Votes \
0 0.403279
1 0.632787
2 0.486339
3 0.523497
4 0.308197
… …
3587 0.904918
3588 0.540984
3589 0.431694
3590 0.000000
3591 0.750820

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 0.818
1 0.446
2 0.537
3 0.720
4 0.528
… …

47

3587 0.464
3588 0.637
3589 0.678
3590 0.755
3591 0.411

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 0.528926
1 0.000000
2 0.000000
3 0.000000
4 0.000000
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_John_Kasich_Percent_of_Votes \
0 0.067293
1 0.222222
2 0.053208
3 0.076682
4 0.508607
… …
3587 0.079812
3588 0.092332
3589 0.000000
3590 0.000000
3591 0.150235

Vote_Data_Marco_Rubio_Percent_of_Votes \
0 0.322169
1 0.202552
2 0.169059
3 0.333333
4 0.397129
… …
3587 0.000000
3588 0.000000
3589 0.204147
3590 0.000000
3591 0.000000

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 0.0

48

1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
… … …
3587 0.0 0.0
3588 0.0 0.0
3589 0.0 0.0
3590 0.0 0.0
3591 0.0 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 0.000000
1 0.400000
2 0.000000
3 0.000000
4 0.066667
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0

49

3590 0.0
3591 0.0

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 0.304071 0.0
1 0.125954 0.0
2 0.486005 0.0
3 0.202290 0.0
4 0.110687 0.0
… … …
3587 0.104326 0.0
3588 0.366412 0.0
3589 0.473282 0.0
3590 0.000000 0.0
3591 0.276081 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

[3592 rows x 19 columns]

[29]: df_cata = df.select_dtypes(include=['object', 'category'])
df_cata = [df_cata,X]
df_cata = pd.concat(df_cata,axis = 1)

50

df_cata = df_cata.drop(['Location_County'],axis = 1)
df_cata.head()

[29]: Location_State Location_State_Abbreviation Vote_Data_Ben_Carson_Party \
0 South Carolina SC Republican
1 Massachusetts MA Republican
2 Louisiana LA Republican
3 Virginia VA Republican
4 Massachusetts MA Republican

Vote_Data_Bernie_Sanders_Party Vote_Data_Carly_Fiorina_Party \
0 Democrat Republican
1 Democrat Republican
2 Democrat Republican
3 Democrat Republican
4 Democrat Republican

Vote_Data_Chris_Christie_Party Vote_Data_Donald_Trump_Party \
0 Republican Republican
1 Republican Republican
2 Republican Republican
3 Republican Republican
4 Republican Republican

Vote_Data_Hillary_Clinton_Party Vote_Data_Jeb_Bush_Party \
0 Democrat Republican
1 Democrat Republican
2 Democrat Republican
3 Democrat Republican
4 Democrat Republican

Vote_Data_John_Kasich_Party … Vote_Data_Marco_Rubio_Percent_of_Votes \
0 Republican … 0.322169
1 Republican … 0.202552
2 Republican … 0.169059
3 Republican … 0.333333
4 Republican … 0.397129

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0

51

1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 0.000000
1 0.400000
2 0.000000
3 0.000000
4 0.066667

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 0.304071 0.0
1 0.125954 0.0
2 0.486005 0.0
3 0.202290 0.0
4 0.110687 0.0

Vote_Data_Uncommitted_Percent_of_Votes
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0

[5 rows x 34 columns]

52

1.5 5. Clusterability and Clustering Structure Questions

[28]: for perp in [5,10, 20, 30, 40, 50]:
for rs in [50,100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',␣

↪'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s'␣

↪%(perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

print('--')

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

53

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

54

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

55

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

56

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

57

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

58

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

59

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

60

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

61

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

62

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

63

--

[29]: # if we choose the location of state is the pre-assigned label and colorer it␣
↪in the t-sne plot

for perp in [5,10, 20, 30, 40, 50]:
for rs in [50,100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',␣

↪'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =␣

↪"Location_State",data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s'␣

↪%(perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

print('--')

64

65

--

66

67

--

68

69

--

70

71

--

72

73

--

74

75

--

[30]: num_trials=10
hopkins_stats=[]
for i in range(0,num_trials):

n = len(X)
p = int(0.1 * n)
hopkins_stats.append(hopkins(X,p))

print(hopkins_stats)

[0.04070630045751869, 0.03929863065307637, 0.0397228717346078,
0.03817619119068465, 0.03718203368349326, 0.04121653438793144,
0.04139403559241479, 0.042184529046137245, 0.03970703705773819,
0.03955241995398281]

Because many of these Hopkins statistics are closer to 0 than they are to 0.5, the Hopkin’s statistic
suggests that the dataset is clusterable.

[31]: X.shape

[31]: (3592, 18)

76

1.6 6. Algorithm Selection Motivation
We chose K-means and HAC algorithms

We perform clustering analysis for the pre-assigned label of location state, so the clustering algo-
rithm is what we need to present. Secondly we throw out the ranks of number, so the data is
presented as a percentage. The values of percentages float from 0-1, plus we removed the states
with small numbers so it is not easy to have outliers.

The type variable only represents the party that the voter is running for, and given that the type
variables for parties are in a repeating pattern, they are less meaningful for classification. We do
not consider the analysis of type variables

By looking at our t-SNE plot, we can see that this dataset is clusterable. This is very suitable for
using simple and practical clustering algorithms like k-means.

K-means is a commonly used unsupervised learning algorithm for clustering data points based on
their similarity. K-means can be a useful algorithm for analyzing presidential election datasets, but
its applicability depends on the specific structure and characteristics of the data and the selection
of Other unsupervised learning algorithms such as hierarchical clustering, principal component
analysis (PCA) and t-SNE may also be worth considering, depending on the specific structure and
characteristics of the data and the selection of features used for clustering. Other unsupervised
learning algorithms such as hierarchical clustering, principal component analysis (PCA) and t-SNE
may also be worth considering, depending on the goals of the analysis and the nature of the data.

Hierarchical classification: This is a clustering algorithm that creates a hierarchy of clusters that can
be visualized as a tree diagram, called a dendrogram. Hierarchical classification can be performed
using either the aggregation method or the segmentation method. Aggregative clustering starts
with each data point as its own cluster and then iteratively merges the most similar clusters until
a single cluster is obtained that contains all data points. Split clustering, on the other hand, starts
with all data points in one cluster and then iteratively divides that cluster into smaller clusters until
each data point is in its own cluster. Hierarchical clustering is useful for identifying relationships
between clusters, and for identifying subgroups within larger clusters.

1.7 7. Clustering K-means
1.7.1 7.1. Parameter Selection

[47]: cluster_num_list=range(1,8)
avg_inertia_list=[]
for k in cluster_num_list:

print('k= '+str(k))
sub_inertia_list=[]
for i in range(0,3):

kmeans=KMeans(n_clusters=k).fit(X)
sub_inertia_list.append(kmeans.inertia_)

avg_inertia_list.append(np.average(sub_inertia_list))

plt.plot(cluster_num_list,avg_inertia_list)
plt.xlabel('Number of Clusters Requested in K-means')
plt.ylabel('Average Inertia of the K-Means Results (3 trials)')

77

plt.title('Elbow Method Results for Artificial Data')
plt.show()

k= 1
k= 2
k= 3
k= 4
k= 5
k= 6
k= 7

[120]: %matplotlib inline
silhouette_scores = []
for k in range(2, 50):

kmeans = KMeans(n_clusters=k, random_state=0)
labels = kmeans.fit_predict(X)
score = silhouette_score(X, labels)
silhouette_scores.append(score)

������������������

78

plt.plot(range(2, 50), silhouette_scores)
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette score')
plt.show()

We are choosing Silhouette score at around 0.35, which cluster K = 13. Because we can see the
elbow plot didn’t give us a good vision of the cluster. Thus, it is reasonable to choose k = 13.

1.7.2 7.2. Clustering Algorithm

Recall the t-SNE plot, we find the perp with 40 and random state with 100, it has a pretty good
clusterable structure.

[49]: for perp in [5,10, 20, 30, 40, 50]:
for rs in [50,100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',␣

↪'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', data=df_combo)

79

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s'␣
↪%(perp, rs))

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

print('--')

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

80

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

81

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

82

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

83

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

84

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

85

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

86

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

87

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

88

--

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

89

No artists with labels found to put in legend. Note that artists whose label
start with an underscore are ignored when legend() is called with no argument.

90

--

From the 7.1, we’ve already decided to use parameters of k = 13. And the random state = 100 may
let the data has more clear cluster sturcture. So we would use them to perform k-means below.

[50]: kmeans=KMeans(n_clusters=13).fit(X)
labels = kmeans.fit_predict(X)
df_kmeans_label = X.copy()
df_kmeans_label['label'] = labels
df_kmeans_label

[50]: Vote_Data_Ben_Carson_Percent_of_Votes \
0 0.382488
1 0.115207
2 0.000000
3 0.437788
4 0.105991
… …
3587 0.000000
3588 0.000000
3589 0.216590
3590 0.000000

91

3591 0.000000

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 0.170
1 0.534
2 0.314
3 0.274
4 0.468
… …
3587 0.511
3588 0.315
3589 0.236
3590 0.181
3591 0.589

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Chris_Christie_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Donald_Trump_Percent_of_Votes \
0 0.403279
1 0.632787
2 0.486339
3 0.523497
4 0.308197

92

… …
3587 0.904918
3588 0.540984
3589 0.431694
3590 0.000000
3591 0.750820

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 0.818
1 0.446
2 0.537
3 0.720
4 0.528
… …
3587 0.464
3588 0.637
3589 0.678
3590 0.755
3591 0.411

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 0.528926
1 0.000000
2 0.000000
3 0.000000
4 0.000000
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_John_Kasich_Percent_of_Votes \
0 0.067293
1 0.222222
2 0.053208
3 0.076682
4 0.508607
… …
3587 0.079812
3588 0.092332
3589 0.000000
3590 0.000000
3591 0.150235

Vote_Data_Marco_Rubio_Percent_of_Votes \

93

0 0.322169
1 0.202552
2 0.169059
3 0.333333
4 0.397129
… …
3587 0.000000
3588 0.000000
3589 0.204147
3590 0.000000
3591 0.000000

Vote_Data_Martin_OMalley_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Mike_Huckabee_Percent_of_Votes Vote_Data_No_Preference_Party \
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0
… … …
3587 0.0 0.0
3588 0.0 0.0
3589 0.0 0.0
3590 0.0 0.0
3591 0.0 0.0

Vote_Data_No_Preference_Percent_of_Votes \
0 0.000000
1 0.400000
2 0.000000
3 0.000000
4 0.066667
… …
3587 0.000000
3588 0.000000

94

3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Rick_Santorum_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 0.304071 0.0
1 0.125954 0.0
2 0.486005 0.0
3 0.202290 0.0
4 0.110687 0.0
… … …
3587 0.104326 0.0
3588 0.366412 0.0
3589 0.473282 0.0
3590 0.000000 0.0
3591 0.276081 0.0

Vote_Data_Uncommitted_Percent_of_Votes label
0 0.0 5
1 0.0 10
2 0.0 11

95

3 0.0 6
4 0.0 10
… … …
3587 0.0 3
3588 0.0 11
3589 0.0 4
3590 0.0 9
3591 0.0 3

[3592 rows x 19 columns]

1.7.3 7.3. Clustering Algorithm Results Presentation

[121]: perp = 40
rs = 100

kmeans = KMeans(n_clusters=13, random_state=100).fit(X)
df_combo["label"] = kmeans.labels_
sns.scatterplot(x='x_projected',y='y_projected',hue = "label",palette=sns.

↪color_palette('husl', 13), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(perp, rs))
plt.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize = 5)
plt.show()

96

1.7.4 7.4. Assessing Clustering Separation and Cohesion

[52]: silhouette_scores = []
for k in range(2, 25):

kmeans = KMeans(n_clusters=k, random_state=0)
labels = kmeans.fit_predict(X)
score = silhouette_score(X, labels)
silhouette_scores.append(score)

������������������
plt.plot(range(2, 25), silhouette_scores)
plt.xlabel('Number of clusters')
plt.ylabel('Silhouette score')
plt.show()

[53]: def show_silhouette_plots(X,cluster_labels):

This package allows us to use "color maps" in our visualizations

97

import matplotlib.cm as cm

#How many clusters in your clustering?
n_clusters=len(np.unique(cluster_labels))

Create a subplot with 1 row and 2 columns
fig, ax1 = plt.subplots(1, 1)
fig.set_size_inches(18, 7)

The 1st subplot is the silhouette plot
The silhouette coefficient fcan range from -1, 1 but in this example all
lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
The (n_clusters+1)*10 is for inserting blank space between silhouette
plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

The silhouette_score gives the average value for all the samples.
This gives a perspective into the density and separation of the formed
clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,

"The average silhouette_score is :", silhouette_avg)

Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):

Aggregate the silhouette scores for samples belonging to
cluster i, and sort them
ith_cluster_silhouette_values = \

sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),

0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)

Label the silhouette plots with their cluster numbers at the middle

98

ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples

ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

plt.show()

return

[54]: kmeans=KMeans(n_clusters=13, random_state=100).fit(X)
cluster_labels = kmeans.labels_

[55]: show_silhouette_plots(X,cluster_labels)

For n_clusters = 13 The average silhouette_score is : 0.35128092983387776

a.) each of the clusters and

b.) the overall clustering. Are there are any objects that have poor cohesion with their assigned
cluster? Explain.

a. We can see cluster 12 and 8 are quite same, but the score is at 0.4, which indicate they have a

99

poor separation and cohesion. Cluster 9, 1, 4, 0 and 3 are similar, the score is 0.6 which have
a moderate separation and cohesion. CLuster 10 is at score 0.5, is a median in separation and
cohesion. CLuster 6 is in a second place which have relatively good separation and cohesion.
Cluster 2 have the highest score which is 0.9, well-separated and well-matched.

b. In this case, the average silhouette score of 0.351 indicates that the clusters are not fairly
well-separated and data points within each cluster are not well-matched. The score is not
particularly high, which suggests that there may be some overlap or ambiguity between the
clusters, or that the clusters are not perfectly optimized for the data.

1.7.5 7.5. Additional Analysis

[56]: from sklearn.metrics import adjusted_rand_score, homogeneity_score,␣
↪completeness_score

[57]: ari = adjusted_rand_score(df_label["Location_State"], df_kmeans_label["label"])
ari

[57]: 0.3469780328175856

[58]: homogeneity = homogeneity_score(df_label["Location_State"],␣
↪df_kmeans_label["label"])

homogeneity

[58]: 0.5464057466437389

[59]: completeness = completeness_score(df_label["Location_State"],␣
↪df_kmeans_label["label"])

completeness

[59]: 0.8269716937056959

The adjusted RAND index score of 0.357 indicates a moderate level of agreement between the true
and predicted labels. The homogeneity score of 0.542 suggests that each cluster contains members of
multiple classes, while the completeness score of 0.811 indicates that members of each class are not
all assigned to the same cluster. These results suggest that while there is some agreement between
the true and predicted labels, the clustering may not be capturing all of the underlying patterns in
the data. It may be worth exploring other clustering methods or tweaking the parameters of the
k-means algorithm to improve the results.

[100]: for perp in [40]:
for rs in [100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',␣

↪'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =␣

↪"Location_State",data=df_combo)

100

plt.title('t-SNE Plot with Perplexity Value %s and Random State %s'␣
↪%(perp, rs))

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

print(' ---------------------True Label-----------------------')
#Color code the points in your t-sne plot by cluster labels and code the␣

↪“style” of the marker with your class labels.
kmeans = KMeans(n_clusters=13, random_state=100).fit(X)
df_combo["label"] = kmeans.labels_
sns.scatterplot(x='x_projected',y='y_projected',hue = "label",palette=sns.

↪color_palette('husl', 13), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(perp, rs))
plt.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize = 5)
plt.show()
print(' ---------------------Predicted Label-----------------------')

---------------------True Label-----------------------

101

---------------------Predicted Label-----------------------

There is a bit difference between true label. We can see the left-up corner have a connect with the
down one. But, the true label is not.

1.7.6 7.6. Describing Each of the Clusters

[115]: for col in df_kmeans_label.columns[:-1]:
plt.figure()
plt.title(col)
sns.boxplot([df_kmeans_label.loc[df_kmeans_label['label'] == label, col]␣

↪for label in range(13)])
plt.xlabel('Cluster Label')
plt.ylabel(col)
plt.show()

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

1. Ben Carson has the highest value of 0.5 in cluster 0 and the lowest cluster is 10.
2. Bernie Sanders is distributed in cluster 12 with a maximum value of 0.9 and the lowest cluster

is cluster 6.
3. Carly Fiorina is mainly distriubate in Cluster 0, have 0.1.
4. Chris Christie is mainly distriubate in Cluster 0 have 0.1.
5. Donald Trump, is mainly distriubate in Cluster 3–0.8. Then he has a very low approval rating

in Cluster 0.
6. Hillary Cliton is mainly in 11, with a value of 0.7 and lowest is in 12.
7. Jeb Bush has very high support in cluster 5, with a value of 0.8 Very low support in cluster

0.
8. John Kasich’s approval rating is only high in 1 and 12, with values of 0.5 and 0.5 respectively,

while the rest are very low.
9. Marco Rubio has a relatively high approval rate of 8, with a value of 0.4, but the rest are

quite average.
10. Mike Huckabee and Martin O’Malley are in the 0 distribution, the others are not.
11. Rand Paul’s approval rating is at cluster 0.
12. Rick Santorum’s approval rating is at cluster 0.
13. Ted Cruz’s approval rating is highest at cluster 4 with a value of 0.6, lowest cluster is 12.

There is no centralized distribution for both unintentional and nonpartisan data, and very little
data.

120

[103]: ctab=pd.crosstab(df_combo['label'],␣
↪df_combo['Location_State'],normalize='index')

ctab.plot.bar()
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

We can see that cluster 7 is composed of one state. But there are some clusters are not agree with
motivation, for example, clusters 0, 1 and 11 have a lot of different states in their distribution. This
shows that also the cohesion is a little bit unsatisfactory.

1.8 8. Clustering Algorithm 2 (change name to the algorithm you chose)
1.8.1 8.1. Parameter Selection

[62]: for link in ['single', 'average', 'complete', 'ward']:
avg_ss=[]
for k in range(2,30):

hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',␣
↪linkage=link)

Y_pred = hac.fit_predict(df_num)
avg_ss.append(silhouette_score(df_num, Y_pred))

121

plt.plot(range(2,30), avg_ss)
plt.title('Average Silhouette Score wth HAC and %s Linkage'%link)
plt.xlabel('Number of Clusters')
plt.ylabel('Average Silhouette Score of Clustering')
plt.show()

122

123

124

We think the cluster number should approach the number of states. If we only choose the highest
Average Silhouette Score from above with low number of cluster, it is unreasonable. Thus, we
selected ward linkage which K = 15. THe ward linkage have the average highest score, which the
score is bigger than k = 7.

[63]: for k in range(2,30):
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',␣

↪linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot
sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',␣

↪palette=sns.color_palette("husl", k), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,␣

↪100))
plt.legend(bbox_to_anchor=(1,1))
plt.show()

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

1.8.2 8.2. Clustering Algorithm

[79]: #Clustering from dendrogram with 6 clusters
hac = AgglomerativeClustering(n_clusters=15, affinity='euclidean',␣

↪linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

[80]: df_combo

[80]: Location_State Vote_Data_Ben_Carson_Percent_of_Votes \
0 South Carolina 0.382488
1 Massachusetts 0.115207

149

2 Louisiana 0.000000
3 Virginia 0.437788
4 Massachusetts 0.105991
… … …
3587 California 0.000000
3588 Arizona 0.000000
3589 Texas 0.216590
3590 Texas 0.000000
3591 South Dakota 0.000000

Vote_Data_Bernie_Sanders_Percent_of_Votes \
0 0.170
1 0.534
2 0.314
3 0.274
4 0.468
… …
3587 0.511
3588 0.315
3589 0.236
3590 0.181
3591 0.589

Vote_Data_Carly_Fiorina_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Chris_Christie_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0

150

3591 0.0

Vote_Data_Donald_Trump_Percent_of_Votes \
0 0.403279
1 0.632787
2 0.486339
3 0.523497
4 0.308197
… …
3587 0.904918
3588 0.540984
3589 0.431694
3590 0.000000
3591 0.750820

Vote_Data_Hillary_Clinton_Percent_of_Votes \
0 0.818
1 0.446
2 0.537
3 0.720
4 0.528
… …
3587 0.464
3588 0.637
3589 0.678
3590 0.755
3591 0.411

Vote_Data_Jeb_Bush_Percent_of_Votes \
0 0.528926
1 0.000000
2 0.000000
3 0.000000
4 0.000000
… …
3587 0.000000
3588 0.000000
3589 0.000000
3590 0.000000
3591 0.000000

Vote_Data_John_Kasich_Percent_of_Votes \
0 0.067293
1 0.222222
2 0.053208
3 0.076682
4 0.508607

151

… …
3587 0.079812
3588 0.092332
3589 0.000000
3590 0.000000
3591 0.150235

Vote_Data_Marco_Rubio_Percent_of_Votes … \
0 0.322169 …
1 0.202552 …
2 0.169059 …
3 0.333333 …
4 0.397129 …
… … …
3587 0.000000 …
3588 0.000000 …
3589 0.204147 …
3590 0.000000 …
3591 0.000000 …

Vote_Data_No_Preference_Party Vote_Data_No_Preference_Percent_of_Votes \
0 0.0 0.000000
1 0.0 0.400000
2 0.0 0.000000
3 0.0 0.000000
4 0.0 0.066667
… … …
3587 0.0 0.000000
3588 0.0 0.000000
3589 0.0 0.000000
3590 0.0 0.000000
3591 0.0 0.000000

Vote_Data_Rand_Paul_Percent_of_Votes \
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Rick_Santorum_Percent_of_Votes \

152

0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
… …
3587 0.0
3588 0.0
3589 0.0
3590 0.0
3591 0.0

Vote_Data_Ted_Cruz_Percent_of_Votes Vote_Data_Uncommitted_Party \
0 0.304071 0.0
1 0.125954 0.0
2 0.486005 0.0
3 0.202290 0.0
4 0.110687 0.0
… … …
3587 0.104326 0.0
3588 0.366412 0.0
3589 0.473282 0.0
3590 0.000000 0.0
3591 0.276081 0.0

Vote_Data_Uncommitted_Percent_of_Votes x_projected y_projected \
0 0.0 15.333004 65.792213
1 0.0 -48.632351 38.450615
2 0.0 -7.403143 -43.584099
3 0.0 17.125759 43.247463
4 0.0 -32.474995 27.306452
… … … …
3587 0.0 40.149212 -39.740902
3588 0.0 0.413865 -43.407272
3589 0.0 13.933252 18.729895
3590 0.0 -53.272396 -38.035904
3591 0.0 42.094490 -25.580858

predicted_cluster
0 7
1 1
2 0
3 12
4 1
… …
3587 4
3588 0

153

3589 8
3590 10
3591 4

[3592 rows x 22 columns]

1.8.3 8.3. Clustering Algorithm Results Presentation

We randomly selected 100 values. The purpose is that because the dataset is too large, the hier-
archical diagram in jupyter notebook running HAC is too intricate and complex. So we randomly
selected 100 does not affect the algorithm itself, just for the aesthetics of the data visualization.

[81]: df_random = df_label.sample(100).reset_index(drop=True)
df_random_num = df_random.drop(['Location_State'], axis = 1)
df_random_num

dm = pdist(df_random_num, metric='euclidean')
S = linkage(dm, method='ward')

fig, ax = plt.subplots(figsize=(30, 30))
d = dendrogram(S, orientation='right', labels=df_random['Location_State'].

↪array, ax=ax)
ax.set_xlabel('Dissimilarity', fontsize=30)
ax.set_ylabel('States', fontsize=30)
ax.set_yticklabels(ax.get_yticklabels(), fontsize=20)
plt.show()

154

[82]: for k in [15]:
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',␣

↪linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot
sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',␣

↪palette=sns.color_palette("husl", k), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,␣

↪100))
plt.legend(bbox_to_anchor=(1,1))
plt.show()

155

1.8.4 8.4. Assessing Clustering Separation and Cohesion

[68]: def show_silhouette_plots(X,cluster_labels):

This package allows us to use "color maps" in our visualizations
import matplotlib.cm as cm

#How many clusters in your clustering?
n_clusters=len(np.unique(cluster_labels))

Create a subplot with 1 row and 2 columns
fig, ax1 = plt.subplots(1, 1)
fig.set_size_inches(18, 7)

The 1st subplot is the silhouette plot
The silhouette coefficient fcan range from -1, 1 but in this example all
lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
The (n_clusters+1)*10 is for inserting blank space between silhouette
plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

156

The silhouette_score gives the average value for all the samples.
This gives a perspective into the density and separation of the formed
clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,

"The average silhouette_score is :", silhouette_avg)

Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):

Aggregate the silhouette scores for samples belonging to
cluster i, and sort them
ith_cluster_silhouette_values = \

sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),

0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)

Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples

ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

plt.show()

157

return

[104]: #Clustering from dendrogram with 15 clusters
hac = AgglomerativeClustering(n_clusters=15, affinity='euclidean',␣

↪linkage='ward')
df_compare = df_num.copy()
df_compare = hac.fit_predict(df_num)

show_silhouette_plots(X,df_compare)

For n_clusters = 15 The average silhouette_score is : 0.3350670274512757

a.) each of the clusters and b.) the overall clustering. Are there are any objects that have poor
cohesion with their assigned cluster? Explain.

a. We can see cluster 5 and 9 the score is at 0.4, which indicate they have a poor separation and
cohesion. Cluster 1 and 6 have the score at 0.5, which said they got a moderate separation and
cohesion. Cluster 7, 4 and 2 are similar, the score is 0.6 which have a moderate separation and
cohesion. CLuster 11 and 8 at score 0.65, is a median in separation and cohesion. CLuster 3
is in a second place which have score at 0.7, relatively good separation and cohesion. Cluster
13 and 14 have the highest score which is 0.9, well-separated and well-matched.

b. In the case, the average silhouette score of 0.269 for n_clusters = 6 suggests that the clustering
results are not very compact and well-separated. It is generally recommended to aim for a
silhouette score closer to 1, indicating better clustering results. However, the choice of the
number of clusters depends on the context and the specific problem you are trying to solve.

158

1.8.5 8.5. Additional Analysis

[70]: from sklearn.metrics import adjusted_rand_score, homogeneity_score,␣
↪completeness_score

[71]: ari = adjusted_rand_score(df_label["Location_State"], df_compare)
ari

[71]: 0.45900746908678663

[72]: homogeneity = homogeneity_score(df_label["Location_State"], df_compare)
homogeneity

[72]: 0.6642166230977945

[73]: completeness = completeness_score(df_label["Location_State"], df_compare)
completeness

[73]: 0.7704005551052056

The adjusted Rand index (ARI) is a measure of the similarity between two clusterings. It ranges
from -1 (no agreement) to 1 (perfect agreement). In this case, the ARI value of 0.459 indicates a
moderate agreement between the true labels and the predicted labels.

The homogeneity score measures how well each cluster contains only samples that are members of
a single class. It ranges from 0 (low homogeneity) to 1 (high homogeneity). The score of 0.664
indicates a moderate level of homogeneity.

The completeness score measures how well all members of a given class are assigned to the same
cluster. It ranges from 0 (low completeness) to 1 (high completeness). The score of 0.770 indicates
a high level of completeness.

In summary, the ARI and homogeneity scores suggest that the clustering results have moderate
agreement with the true labels and moderate homogeneity, while the completeness score suggests
that the clustering results have high completeness.

[105]: for k in [15]:
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',␣

↪linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot
sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',␣

↪palette=sns.color_palette("husl", k), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,␣

↪100))
plt.legend(bbox_to_anchor=(1,1))
plt.show()

print(' ---------------------Predicted Label-----------------------')

159

for perp in [40]:
for rs in [100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',␣

↪'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =␣

↪"Location_State",data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s'␣

↪%(perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

print(' ---------------------True Label-----------------------')

---------------------Predicted Label-----------------------

160

---------------------True Label-----------------------

We can see there are somewhat different between the true label. For example, you can see the left
up corner, there are three cluster being seperated.

1.8.6 8.6. Describing Each of the Clusters

[108]: #Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=15, affinity='euclidean',␣

↪linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

[109]: for col in df_label.columns[1:18]:
sns.boxplot(x="predicted_cluster", y=col, data=df_combo)
plt.show()

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

1. The vote for Bernie Sanders are mainly distributed in cluster 3 and 13 which apportch to 0.9.
But cluster 11 and 12 have the lowest which is 0.1.

2. For Carly Fiorina, it is mainly distriubated in Cluster 14, have 0.35.
3. For Chris Christie iy is mainly in cluster 14 have 0.75
4. For Donald Trump, mainly distributed in cluster 0, 9 and 17 which apportch to 0.8. But

cluster 2 are very low.
5. HillaryCliton mostly distributed in cluster 11, 12 and 15. But less distributed in 3 and 13.
6. Jeb Bush had a lot of support on cluster 14 and 15, but cluster 1 very low support.
7. John’s approval rating is only high among 18, and the others are very low.
8. Marco Rubio has a very high rating in cluster 10 but the rest are vert low.
9. Mike Huckabee and Martin OMalley are only distributed in cluster 9 and none of the others.

Unaffiliated and nonpartisan data are not centrally distributed and data are scarce.

[90]: ctab=pd.crosstab(df_combo['predicted_cluster'],␣
↪df_combo['Location_State'],normalize='index')

ctab.plot.bar()
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

178

We can see from the bar plot that clusters 7, 8, 11, 12 and 14 are composed of one state. But in
clusters 2�4 and 5, there are multiple states. So the bar plot of HAC also shows that the cohesion is
a little bit unsatisfactory. The cluster structure goes to K=15, plus our additional analysis said the
ARI and homogeneity scores suggest that the clustering results have moderate agreement with the
true labels and moderate homogeneity, while the completeness score suggests that the clustering
results have high completeness which fit with the bar plot.

1.9 9. Analysis Summary and Conclusion
1.9.1 9.1. Algorithm Comparison Summary

9.1.1. Comparing Algorithm Performance recall the bar plot in 7.6 and 8.6 first.

[114]: kmeans = KMeans(n_clusters=13, random_state=100).fit(X)
df_combo["label"] = kmeans.labels_
ctab=pd.crosstab(df_combo['label'],␣

↪df_combo['Location_State'],normalize='index')
ctab.plot.bar()
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()
print(' ---------------------Bar for Kmeans-----------------------')

179

ctab=pd.crosstab(df_combo['predicted_cluster'],␣
↪df_combo['Location_State'],normalize='index')

ctab.plot.bar()
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()
print(' ---------------------Bar for HAC-----------------------')

---------------------Bar for Kmeans-----------------------

180

---------------------Bar for HAC-----------------------

Given your research goals and motivation stated at the beginning of your analysis,
compare and contrast the performance of your two clustering algorithms. recall the
Motivation: We want to use the voting data to determine if different counties are clustered according
to the state they are in. We also want to explore the distribution of candidates supported in each
cluster. The specific method is: we take the information of the real state where the county is
located as the pre-defined label, and then check whether the predicted clusters are related to our
pre-defined Location_State by different clustering algorithms. Then we analyze each cluster in
detail to explore the components with high candidate support.

Looking first at the k-means, we can see that cluster 7 is composed of one state. But we can see that
some clusters are not conceived with motivation, for example, clusters 5 and 11 have different states
in their distribution. This shows that also the separation and cohesion is a little bit unsatisfactory,
especially the cohesion.

Next is the HAC, where we can see that clusters 7, 8, 11, 12 and 14 are composed of one state. But
in clusters 2 and 5, there are multiple states. So the bar plot of HAC also shows that the cohesion
is a little bit unsatisfactory.

9.1.2. Comparing Algorithm Results

181

[111]: for perp in [40]:
for rs in [100]:

tsne = TSNE(n_components=2, perplexity=perp, random_state=rs)
data_tsne = tsne.fit_transform(X)
df_tsne = pd.DataFrame(data_tsne, columns=['x_projected',␣

↪'y_projected'])
df_combo = pd.concat([df_label, df_tsne], axis=1)
sns.scatterplot(x='x_projected',y='y_projected', hue =␣

↪"Location_State",data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s'␣

↪%(perp, rs))
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize = 5)
plt.show()

print(' ---------------------True Label-----------------------')

for k in [15]:
#Clustering from dendrogram with k clusters
hac = AgglomerativeClustering(n_clusters=k, affinity='euclidean',␣

↪linkage='ward')
df_combo['predicted_cluster'] = hac.fit_predict(df_num)

#Map the resulting cluster labels onto our chosen t-SNE plot
sns.scatterplot(x='x_projected',y='y_projected', hue='predicted_cluster',␣

↪palette=sns.color_palette("husl", k), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(40,␣

↪100))
plt.legend(bbox_to_anchor=(1,1))
plt.show()

print(' ---------------------Predicted Label␣
↪HAC-----------------------')

#Color code the points in your t-sne plot by cluster labels and code the␣
↪“style” of the marker with your class labels.

kmeans = KMeans(n_clusters=13, random_state=100).fit(X)
df_combo["label"] = kmeans.labels_
sns.scatterplot(x='x_projected',y='y_projected',hue = "label",palette=sns.

↪color_palette('husl', 13), data=df_combo)
plt.title('t-SNE Plot with Perplexity Value %s and Random State %s' %(perp, rs))
plt.legend(bbox_to_anchor=(1, 1), loc='upper left', fontsize = 5)
plt.show()
print(' ---------------------Predicted Label␣

↪K-means-----------------------')

182

---------------------True Label-----------------------

183

---------------------Predicted Label HAC-----------------------

184

---------------------Predicted Label K-means-----------------------

Average silhouette_score is 0.35 from k-means, 0.33 from hac ward linkage. These values are quiet
similar, however, the K-means are better.

And we compare the t-SNE plot, from the t-SNE plot, HAC and K-means are similar too with
k=13 and k=15. Also their distribution is also similar by the t-SNE plot. In addition, those two
plot have strong relation with the location_state. Both of this two algos have proved that our goal
in the motivation which is the vote preference in each county may be similar according to their
state.

All in all, these two algorithms are pretty similar. However, the K-means has higher average
silhouette score. A higher average silhouette score indicates better clustering performance, where
each data point is more similar to other data points in the same cluster than to data points in other
clusters. Also, K-means have more balanced clusters. But the HAC shows more clusters, which are
more close to the real number of states. The difference between them are not huge, they are both
good algo in this situation as far as I am concerned.

1.9.2 9.2. Conclusion and Insights Summary

In conclusion, we have used clustering algorithms to explore the distribution of vote preference in
each county and determine if they are clustered according to the state they in. The K-means and
HAC clustering algorithms were used, and their performance was compared based on the average

185

silhouette score and t-SNE plot. The results showed that both algorithms have strong relations
with the location_state and are good in this situation. However, K-means had a higher average
silhouette score, indicating better clustering performance, and more balanced clusters with a greater
distribution shape. On the other hand, HAC showed more clusters, which were more close to the
real number of states. In general, the results suggest that the vote preference in each county may
be similar according to their state, but with some variations that need to be explored further.

1.10 10. Group Contribution Report
Project Name: Election Analysis

Team Members:

[Shuoyuan Gao]

[Shiyuan Zhang]

Contributions:

[Shuoyuan Gao] - [Part1, Part2, Part3, Part4, Part8, Part9] - 60%

[Shiyuan Zhang] - [Part5, Part6, Part7, part10] - 40%

This notebook was converted with convert.ploomber.io

186

	Election Analysis
	1. Introduction and Dataset Research
	2. Data Cleaning and Data Manipulation
	number有的太大 所以有extreme value which will cause inaccurate 分析

	3. Basic Descriptive Analytics
	3.1 For numerical attributes, calculate basic summary statistics about each attribute.
	3.2 For any categorical attributes, count up the number of observations of each type.
	3.3 Determine if there exist are any strong pairwise relationships between the variables in your dataset

	4. Dataset Scaling Decisions
	5. Clusterability and Clustering Structure Questions
	6. Algorithm Selection Motivation
	7. Clustering K-means
	7.1. Parameter Selection
	7.2. Clustering Algorithm
	7.3. Clustering Algorithm Results Presentation
	7.4. Assessing Clustering Separation and Cohesion
	7.5. Additional Analysis
	7.6. Describing Each of the Clusters

	8. Clustering Algorithm 2 (change name to the algorithm you chose)
	8.1. Parameter Selection
	8.2. Clustering Algorithm
	8.3. Clustering Algorithm Results Presentation
	8.4. Assessing Clustering Separation and Cohesion
	8.5. Additional Analysis
	8.6. Describing Each of the Clusters

	9. Analysis Summary and Conclusion
	9.1. Algorithm Comparison Summary
	9.2. Conclusion and Insights Summary

	10. Group Contribution Report

